DroidDisintegrator:
Intra-Application Information Flow Control in Android Apps

(extended version)*

Roei Schuster Eran Tromer
Tel Aviv University Tel Aviv University
roeischuster@mail.tau.ac.il tromer@cs.tau.ac.il

April 22, 2016

Abstract

In mobile platforms and their app markets, controlling app permissions and preventing abuse
of private information are crucial challenges. Information Flow Control (IFC) is a powerful ap-
proach for formalizing and answering user concerns such as: “Does this app send my geolocation
to the Internet?” Yet despite intensive research efforts, IFC has not been widely adopted in
mainstream programming practice.

We observe that the typical structure of Android apps offers an opportunity for a novel and
effective application of IFC. In Android, an app consists of a collection of a few dozen “compo-
nents”, each in charge of some high-level functionality. Most components do not require access
to most resources. These components are a natural and effective granularity at which to apply
IFC (as opposed to the typical process-level or language-level granularity). By assigning different
permission labels to each component, and limiting information flow between components, it is
possible to express and enforce IFC constraints. Yet nuances of the Android platform, such as
its multitude of discretionary (and somewhat arcane) communication channels, raise challenges
in defining and enforcing component boundaries.

We build a system, DroidDisintegrator, which demonstrates the viability of component-level
IFC for expressing and controlling app behavior. DroidDisintegrator uses dynamic analysis to
generate IFC policies for Android apps, repackages apps to embed these policies, and enforces
the policies at runtime. We evaluate DroidDisintegrator on dozens of apps.

1 Introduction

1.1 Motivation

The unprecedented connectivity, sensor capability and portability of modern smartphones encourage
their use as a primary networking device, entrusted with abundant personal or otherwise sensitive
information. Yet users typically run myriad third-party applications (“apps”), authored by unfa-
miliar or untrusted sources. These apps are typically granted access to the mobile platform’s data
and sensors. This highlights concerns about privacy breaches: information on the device being

* A short version of this paper is to appear in the ACM Symposium on Information, Computer and Communications
Security (ASIACCS) 2016 [TS16).

made available to some party contrary to the user’s wishes. Integrity of data stored on the device
is also at risk, as is the device’s behavior (e.g., on authenticated channels to external parties, or by
consumption of resources).

In popular mobile platforms (e.g., Android, iOS, and Windows Phone), two main security mecha-
nism are employed to address these concerns. First, apps for these platforms are distributed through
a centrally-controlled channel (“app markets”) where they undergo a verification process. Second,
within the mobile platform, apps are sandboxed at runtime by software and hardware mechanisms,
limiting their access to data and system resources. In the following we focus on Android, as a
prominent and representative example.

Filtering at app market allows for powerful program analysis techniques to be used offline and
ahead of time. In particular, numerous static [CFGW11, LLW'12, GCEC12, FCF09, GZWJ12,
ARF*14, MGH15, LBB*15, BIM*15, CFB*™15, OLD" 15, GKP™, YLL ™15, OMJ*13, FAR"13] and
dynamic [ZWZJ12, MEK 12, HLN*14, RCE13, EGC*14, GCEC12| analysis techniques have been
proposed. The particular analysis methods implemented by the commercial app market curators are
not known, though there has been some reverse engineering [OM12, PS12]. The analysis performed
by Google’s “Bouncer” is for malware-filtering purposes only, and does not provide end-users and
reviewers with information about the risk analyzed apps pose, if they are deemed “legitimate”. In
addition, popular third party markets are not protected by Bouncer [ZWZJ12| .

Another user protection mechanism is the App sandbox, based on permissions granted to the
app upon installation. Apps explicitly declare the required permissions. The end-user is prompted
to approve some of the permissions during the installation process. Android blocks the app from
exercising certain permission-protected APIs if the app doesn’t declare the respective permissions.

Still, it is often unclear to end-users, platform maintainers and app reviewers what risk the app
actually poses to its users [PXYT13, FGW11, FHE"12|. This depends on how the permission-
protected APIs are used by the app. Many enhancements to Android platform security that further
constrain apps’ behavior have been proposed [ZZJF11, NKZ10, DSPT, FWM*11, BDD*12, SDW12,
WHZ™, HNES14, XSA12, SC13, SFE10, NE13, KNK*12| to address this problem. Often, users
and app reviewers expect apps to live up to certain restrictions, and it is a common practice among
developers to write explanatory text describing the reasons for requesting a permission [PXY*13].
However, these explanations can contain mistakes or falsehoods; moreover they are often absent or
hard to find.

Ideally, the Android app permission system would express, as well as enforce, what is stated in
these explanations. We address the realization of this ideal with regard to information flow within
the app. Consider, first, the following motivating examples of real-world apps.

Truecaller. Truecaller is a Caller-ID app. The Google Play description explicitly states: “Truecaller
NEVER uploads your phonebook to make it searchable or public”. This is, however, not enforced
by the app sandbox.

Smart Voice Recorder. The dubious permission to Record Audio (at any time) is necessary for
any app which uses the phone’s Microphone. Smart Voice Recorder records audio at the user’s
request. It also requests internet access to display ads. There is no reason why the information
from the internet should flow into the Record Audio API (e.g., invoke recording of audio by Smart
Voice Recorder’s web server), but there is no way to enforce the prevention of this flow. This is an
integrity issue. There is also no reason why recordings should flow to the internet. This is a privacy
issue. Another example given in Appendix A.1.

Android’s existing permissions model cannot express the above observations about how apps

operate and the risks they do (or do not) pose to users. Moreover, Android’s existing enforcement
mechanism cannot enforce the absence of the aforementioned undesired actions — we merely observe
that the app happens to not invoke those actions, but it could easily and silently act otherwise. A
more expressive language for specifying app behavior (backed by an enforcement mechanism) would
let app developers characterize app behavior more precisely, and let users better judge the potential
risk of installing apps.

The inherent problem of the Android permissioning system, observed above, is that information
from all sources accessible to the app can flow, at the app code’s discretion, to all accessible sinks.
Information Flow Control (IFC) is a class of enforcement policies which model entity capabilities as
information sources and information sinks, and limit the ability of the governed entities to transfer
information from sources to sinks in a more fine-grained way. Thus, applying an IFC technique to
Android apps can mitigate the privacy and integrity hazards depicted in the above examples.

A related concern is that of helping users, as well as enterprise IT managers, make informed
decisions. Users shouldn’t care about, nor guess the implications of, an app having access to their
contact data. However they might be alarmed to learn that the app sends their contacts to some web
server. Telling users about app information flow brings us closer to informing users about “risks,
not resources”, as advocated and empirically supported by Felt et al. [FHE*12]. This is evident in
the textual descriptions that app developers provide to justify permission use, which often take the
form of (informal) declarations of information flow (as for Truecaller, above). The ability to express
and enforce such claims can thus substantially improve security in mobile apps.

1.2 Use Cases and Threat Model

DroidDisintegrator offers a framework for repackaging apps to embed explains app manifests). Our
variant of the Android OS can then enforce this policy given the metadata. This mechanism
can be deployed in two scenarios (see Figure 1). First, a security-aware developer, concerned
about untrusted library code and the possibility of having inadvertently introduced bugs into the
code, repackages the app to tighten its running restrictions (possibly after using feedback from
DroidDisintegrator to tighten information flow in the app), and then releases the repackaged app.
Alternatively, the developer releases the app without repackaging, but an app curator in the app
distribution chain (e.g., the app market, or the IT staff in an enterprise), distrusting both the
developer’s intentions and competence, repackages the app. In both cases, the curators along the
app distribution chains, as well as app reviewers (where applicable), can inspect the information
flows in the manifest, and base their decisions and recommendations on it.

In this approach, a malicious app wishing to leak information contrary to users’ intuition or
the textual declarations in its description will not be able to fool curators and reviewers (and
subsequently end users), since its policy would have to permit the leaky behavior. We do not
identify nor block malicious behavior directly, but by allowing benign apps to declare their (enforced)
restricted behavior, we expose the “true nature” of malicious apps which cannot do this and must
make transparent their malintent. Conversely, if an app is packaged with a policy that forbids an
information leak, then this will be enforced even if the app is buggy, malicious or compromised.

1.3 Component-level IFC

Existing information flow control techniques have not, to date, gained popularity in mainstream
apps. Some, such as JIF [Mye99], Fabric|LGVT09], Mobile Fabric [AGLT12] and others [SR03,

Library
developer

App
developer

Curators

Reviewers

(Runtime :
End users nforcemen
Running
al

Figure 1: Deployment and threat model. The buggy deployment scenario is marked by dots and
the malicious by dashes.

SMO03|, incorporate alterations in the programming language itself, such as variable labeling, to
enforce very fine-grained information flow constraints. This approach does not handle native code
(common in Android apps). Moreover, it takes a toll on the developer and is hard to incorporate
into existing architectures [Zda04]. Ernst et al. [EJM™ 14| recently adopted, customized, and imple-
mented this approach for Android apps, optimizing on practicality for real-world apps. However,
none of these frameworks are (to date) commonly used or supported.

Another approach is to construct policies which attach security labels to processes. By en-
forcing restrictions on inter-process communication and access to operating-system level resources
(files, sockets, etc.) [KYBT07, ZBWKMO06, SFE10, SC13], it is possible to guarantee system-level
information flow constraints. Some of these solutions are even Android-specific [KNK12, JAFT].
However, this approach doesn’t allow us to reason about information flow within a single-process
monolithic app. Therefore we must adopt a different approach.

We observe that mobile app programming in Android offers a very promising intermediate
granularity. The Android API defines components: functional units that interact with the An-
droid framework and each other. An app is composed of multiple (typically, up to several dozen)
components, and the app’s execution is, essentially, the invocation of and interaction between its
components (with some exceptions; see Section 2.1). Typically and by default, all of the app’s
components run within a single process.

We hypothesize that by limiting unnecessary inter-component communication and enforcing
resource usage at component granularity, it is possible to guarantee IFC constraints within the
entire app. This raises the following challenges, which are addressed in this work:

e Defining component boundaries inside an app.

e Defining a policy for limiting inter-component communication and resource usage by individual
app components. This policy should guarantee compliance with desired IFC constraints, but still
allow operations necessary for the app’s “legitimate” behavior.

e Enforcing the policy. This requires the ability to soundly monitor inter-component communica-
tion, as well as resource usage in the granularity of a component.

The policy is expressed at component granularity; it allows arbitrary information flow within com-
ponents, and reasons only about the communication between them.

For policy enforcement, we propose running different components in different processes (when
needed) and then leveraging the robust existing mechanisms for process compartmentalization and
inter-process IFC. We call this Application Decomposition. The Android API supports splitting the
app into several processes, each running a different subset of app components [jia]. However, some
sets of components are designed to communicate with others through process memory [Doca, Docb;
we do not wish to break apps using such patterns. This raises a fourth challenge:

e Learning, prior to the enforcement stage in which components are process-separated, which
components cannot be separated from others (again, because they are designed to communicate
with each other through process memory).

Reasoning about information flow at the level of components rather than variables or entire pro-
cesses is very natural from the perspective of app design. This places less burden on the developer
than other IFC frameworks, in which programs are split into several untrusted subprograms with
different privileges, e.g., Jif/split [ZZNMO01] and Swift [CLM™07], which require language variable-
level annotations, or Hails [GLS™12] and xBook [SBL09], which require a designated runtime and
programming environment, and require developers to explicitly declare “components” (in a different
sense than Android components). In contrast, the Android component level respects the existing
modularity and communication barriers within the apps, which are born out of both the platform’s
programming methodology and software-engineering practices of programmers. Component permis-
sion separation also decreases the amount of code running under each specific permission, rendering
apps less vulnerable to confused deputy [Har88] attacks and erroneous API use.

As we show empirically, even in unmodified legacy apps, component-level information flow (prop-
erly analyzed) often provides a good approximation of the app’s true information-flow behavior and
can lead to informative and enforceable policies. In using component-level granularity, our approach
is similar to the formal process calculus of Jia et al. [JAFT| (see Section 1.5); we pursue the com-
plementary perspective of implementing an analysis and enforcement framework, and suggest an
approach for soundly monitoring inter-component communication inside apps.

1.4 Ouwur Contribution

Use Cases. We suggest a workflow for sound enforcement of component-level IFC. This includes
phases of app analysis, policy generation and repackaging of the app’s binary (in .apk form), and
a lightweight runtime component for policy enforcement (an alteration to the Android OS).

Analysis, policy generation and app modification. We implement a framework, DroidDisintegrator,
for developers wishing to express information flow constraints in their own apps (in order to increase
their appeal to users). DroidDisintegrator learns communication patterns between components,
using dynamic analysis techniques (based on and extending the Appsplayground [RCE13] fuzzer
and TaintDroid [EGCT14] taint tracker), in order to suggest a suitable mapping of app components
into different processes and a suitable IFC enforcement policy. DroidDisintegrator also provides
an output that reflects the information flows within the app and thus guides the programmer in
identifying changes to the app that will facilitate an even tighter information-flow policy. Finally,
DroidDisintegrator repackages the app to encompass both the policy and the component-to-process

mapping.

Enforcement. We implement a lightweight reference monitor, within Android, which enforces the
component-level policy embedded in the app package.

Applicability to legacy apps. We evaluate the practicality of our solution by using DroidDisintegra-
tor to construct policies for, and repackage, dozens of apps downloaded from Android’s app market.
DroidDisintegrator automatically analyzed these apps, and in about half the cases found ways to
restrict their information flows without breaking their functionality; it then repackaged them to
enforce these policies. It reduced the average number of permissions granted to each component to
less than a third of the original.

Fail-safe analysis. Precise information-flow analysis is difficult, especially for unannotated legacy
code in executable form. DroidDisintegrator can use imprecise analysis (e.g., not including implicit
flows) without harming security, because its approach is fail-safe: information flows that were not
detected in the analysis, and thus reported to the app user as not existing, will not be permitted
by the generated and enforced policy. Analysis error can result in either reduced app functionality
or an overly permissive advertised policy, but cannot break the security guarantees of the policy.
This is fundamentally different than in tools designed for vetting apps by discovering malicious be-
havior (e.g. FlowDroid [ARFT14] and DroidSafe [GKP™]): while those must detect all maliciously
hidden information flows (to rule them out), DroidDisintegrator need only detect the information
flow during nominal operation (to preserve app functionality).

1.5 Related Work

On-device enforcement. TISSA [ZZJF11] and Apex [NKZ10] offer fine-grained control over permis-
sions, e.g., per-app user configuration (which can be tweaked at any time), or a “privacy mode”
(when at a certain location or time). Android temporarily adopted a similar approach with AppOps,
a feature allowing users to dynamically block app permissions, but removed it in 4.4.2 [Ros, XD].
AdSplit [SDW12], AdDroid [PFNW] and Compac [WHZ™| introduced confinement mechanisms to
separate advertisement library permissions from those of the hosting app. ASM [HNES14] exposes
a callback interface for handling and monitoring system events. Aurasium [XSA12] repackages apps
to add policy enforcement code. Both ASM and Aurasium are generic policy enforcement tools that
expose flexible interfaces for policy definition.

SEAndroid [SC13, SFE10] enforces mandatory access controls using SELinux at the kernel level,
and is now partially integrated into Android mainline. Aquifer [NE13] and Joshi et al. [KNK™12]
are mechanisms for inter-app IFC.

Quire [DSPT|, IPC Inspection [FWM™11], and XManDroid [BDD*12, BDD ™| address the “con-
fused deputy” [Har88] (permission redelegation) attacks. Quire [DSP™] provides authentication code
and metadata for data flowing through apps and RPCs, so that the provenance of the data and
origin of requests can be verified by the receiving end. IPC Inspection [FWMT11] revokes per-
missions of apps upon interaction with less-privileged code. XManDroid [BDDT, BDD'12] also
monitors inter-app communication and uses a centralized policy to mitigate collusion attacks and
confused deputy attacks. These confused deputy mitigation methods can ensure the integrity of
data and requests that flow through apps, and prevent these apps from unintentionally fulfilling an
untrusted request. The benefits of this partially overlap with those of IFC, e.g., blocking confused
deputy attacks that cause a data leak. However, the above do not protect against intentional or
unintentional information leaks by apps themselves. Also, in IPC Inspection, permission revocation
is at app level, which is coarser grained than component-level and may be over-restrictive.

Static analyzers like Stowaway [FCH* 11| and permission-protected API specifications like PScout
[AZHL12] and SuSi [ARB13] can be used to learn which permissions are requested by the app and
not used at all (they protect APIs not accessed by the app). Removing these from the app’s permis-
sions list is a degenerate case of IFC; it prevents information flows from these sources into any sink.
We focus on enforcing IFC between information sources and sinks which are legitimately accessed
by some part of the app.

Intra-application IFC. SEDalvik [BBC™13] provides mandatory access control for Java objects in
Android. The virtual machine itself monitors the interaction between the objects. This granularity
is very fine, resulting in extremely complex policies. No methodology for intra-application TFC
policy construction is offered. Moreover, the Java virtual machine in Android (Dalvik) is not a
sandbox. Malicious apps can run native code and evade SEDalvik altogether. AppFence [HHJ11]
enforces IFC using taint tracking. Taint tracking does not capture implicit flows and can be eas-
ily bypassed by an aware malicious developer (DroidDisintegrator also uses taint tracking using
TaintDroid [EGCT14], but only for policy generation, and not for enforcement). Jia et al. [JAFT]
proposed using component granularity for specifying a DIFC policy, and devised a suitable process
calculus. However their proposed intra-application IFC enforcement is “best effort” rather than
sound: when the app deviates from conventional Android programming patterns, and even when
the app uses some recommended programming patterns [Doca, Docb], there will be undetected and
erroneously permitted information flow. Moreover, Jia et al. do not handle callbacks registered by
components (see Section 4.2), so a vast amount of code in typical Android apps will go unmonitored.

2 Android Background

2.1 Components in Android

Android apps are composed of components. Each component is of one of the following types:
Activity, Broadcast Receiver, Service or Content Provider. Each component is declared in the app
“manifest” file, along with some of its attributes'. The manifest is an XML file with explicit
declarative specification of some of the app requirements and behaviors. Each component has
a specific role to play in the app’s functionality. Activities correspond to app “windows” (UI
behaviors). Broadcast Receivers are a “mailbox” (each receiver receives and responds to certain
messages or broadcast events). Services (not to be confused with system services, see Appendix A.3)
represent background operations or “living” objects. Content Providers export content (e.g., table
based databases). The behavior of the app is defined as the joint behavior of its components.
According to Android Developer documentation, “each one [component] exists as its own entity
and plays a specific role — each one is a unique building block that helps define your app’s overall
behavior”. We thus view app components as standalone building blocks. The developer customizes
component behavior by extending base classes (e.g., “class Activity”) and overriding their methods.
These methods serve as callbacks into app code, invoked upon phases in the component life cycle?.
App component code typically runs within a single process. Components are provided as Dalvik

!Some components are not declared in the manifest but are registered by the app at runtime, using designated
APIs.

2Tt is possible to define entry points to app code that are not a part of a component’s life cycle. Examples include
class static constructors, and adding app instrumentation code (e.g., for runtime profiling). These and other types of
entry points can be modeled as additional (synthetic) components.

Ezxecutable (DEX) bytecode, and the app process runs an instance of the Dalvik Virtual Machine
(DVM) to execute the bytecode.

2.2 ICC and Binder in Android

The Android API supports and encourages communication between components utilizing a series of
framework interfaces called Inter-Component Communication (ICC). For example, an Activity (or
any other component) can start a new activity or service, send a broadcast message to broadcast
receivers, and query content providers. In these cases an Android process (the System Server)
mediates, and is able to monitor, this interaction. However, it would not be correct to assume that
all interaction between components takes place through these interfaces. See Appendix A.5 for more
details about ICC.

Android supports RPCs with an elaborate architecture called Binder. The Binder architecture
consists of in-kernel code, along with native and Java middleware, which implement Binder objects.
They can be thought of as system-global objects. To obtain a reference to a Binder object, a process
must get its token from the kernel. Instance methods of Binder objects are executed in the process
that instantiated the Binder object. Appendix A.3 elaborates on the Binder architecture. We refer
to a Binder object instantiated in a process as a local Binder object in this process; otherwise, it is
a remote Binder object.

The ICC API is exposed by the Activity Manager (AM), a globally-available Binder object
(its token obtainable by any process) which is local in the system server. ICC always crosses app
boundaries: to perform an intended action, a component sends an Intent to the AM, which resolves
the intent’s target component (which can handle the action) and sends it the intent?.

3 Owur Approach

3.1 DroidDisintegrator Workflow

We designed and implemented a full workflow for realizing component-level IFC. It consists of
dynamic analysis of an app, generation of an IFC policy based on the analysis, repackaging to
embed the policy, and finally, enforcing the policy at runtime. In this section we provide a concise
overview of the workflow, which is depicted in Figure 2. Section 4 describes DroidDisintegrator, our
implementation of this workflow.

Dynamic Analysis. We first collect information about app component interaction in order to con-
struct a policy. The dynamic analysis framework is a device emulator running an Android OS
variant designed to monitor three types of events when running apps: app component communica-
tion through the process memory, app component communication through other channels, and use
of permissions by individual components. An event fuzzer drives the app’s behavior in the dynamic
analysis framework. Figure 3 depicts the detected events in an actual app.

Policy Generation. An app decomposition (see Section 1.3) configuration, as well as an IFC policy,
are generated using the information captured during dynamic analysis. The decomposition config-
uration is a mapping of components into subsets (processes): an equivalence relation is generated

3We use the term ICC also when referring to Content Provider APIs, which operate similarly to intents.

‘ Input: APK k._
Optional program
adaptation
Runtime
1Guiding Enforcement
Y output for End User
Dynamic Policy Policy|
Analysis ’—> generation —>»| Repackaging

Repackaged

Inter-component communication events and APK

component resource use events

Figure 2: DroidDisintegrator workflow

‘ instruction.step_06_anonyvm MainWnd

‘ instruction.step_07_unknowncall ‘ ‘ blockingops.PunchBackSetup ‘ android.permission.RECEIVE_SMS
Y

android.permission.INTERNET ‘ InstructionStartReceiver ‘

LM
‘ blockingops.SmsReceiver ‘ android.permission.READ_PHONE_STATE
i)

L
‘ instruction.AboutWnd ‘ ‘blockingops.PunchBackService‘

instruction.step_01_bootup ‘ android.permission.WRITE_SETTINGS

instruction.step_02_startnotify ‘

instruction.step_03_blocknotify ‘

instruction.step_04_erasecalllog ‘

instruction.step_05_anonymous [

Figure 3: Inter-component communication and component permission use in “GreyThinker”, a call
blocking utility (“com.greythinker.punchback”). Green nodes denote permissions used (sources
and sinks). Red edges denote communication through process memory. Black edges denote other
communication.

in which two components are equivalent (mapped to the same process) iff it is not possible to as-
sume that some information flows into, or from, one of them and not the other (this is detailed
in Section 3.3). A policy contains: (1) Permissions assigned to each component subset (process).
(2) Allowed communication directions between component subsets. Such a policy allows us to infer
statically which information flows will be possible at runtime (this is detailed in Section 3.4).

The output of the policy generation stage can assist developers in making simple changes that
would make the policy more information-flow preventive.
Optional program adaptation. Awareness of the eventual IFC policy allows developers to alter app

code to make it conductive to the component-level IFC analysis and enforcement, guided by the
output of the policy generation stage.

Repackaging. We change the app’s manifest to declare a process for each component, process
permissions, and the allowed inter-process communication directions.

Runtime Enforcement. At app installation and runtime on end users’ devices, a modified version
of the Android OS enforces the IFC policy embedded within the app package. This is done by
leveraging process compartmentalization, and adding a lightweight reference monitor. No expensive
analysis, such as taint tracking, is done at this stage.

3.2 Discussion: Static vs. Dynamic Analysis

It is natural to consider using static (rather than dynamic) analysis for Inter-Component Commu-
nication. Static analysis is less sensitive to platform updates, and does not require driving the app
UI, for example manually or by fuzzing. However, state-of-the-art Android static analysis|GKP™,
LBB'15, ARF*14] methods explore control flow paths that are unreachable in actual app opera-
tion. For example, they consider all sequences of Ul event callbacks, including those which cannot
occur in the given UI state (the user can only interact with visible Activities). There are also
Android-specific difficulties of static app analysis (partially addressed by IccTA[LBBT15]): the
asynchronous, user-centric nature of Android apps, and accurately tracking Intent targets. In our
workflow, when the above issues result in analysis false positives, it could cause the generated policy
to be overly permissive (see Section 4.10). Moreover, static analysis cannot be easily plugged into
existing product acceptance tests or unit tests to leverage their app-tailored code exploration, as we
would expect developers to do with DroidDisintegrator. For these reasons we chose to use dynamic
analysis for our initial implementation.

3.3 App Decomposition Configuration

We wish to map components into processes so that each component resides in one process as
described in Section 3.1. The mapping has two goals: not to break app behavior and to reduce the
overall number of processes (to reduce unnecessary performance overhead). For the second purpose,
we will join components with the same expected privileges into the same process.

Let the relation Reony be all app component pairs (A, B) s.t. A sends information to B via ICC
(sends intent/reads content provider/etc.) or via an IAC channel (Android Properties, file system
inode representing a file, pipe, etc.). Let the relation Rmem be all app component pairs (A, B) s.t.
information flows from A to B through process memory. We say information flows fromA to B
through process memory iff A writes data that B reads (for example, A sends B a value using a
static class member).

Let R be a relation. We use R*to denote its closure and R~ 'to denote its inverse.

10

Note that if (A, B),(B,A) € (Reomm)’, then A and B communicate back and forth. We
cannot enforce that one of them has access to less information than the other without breaking app
functionality. By segregating them into different processes, we gain nothing.

Note, moreover, that if (A, B) € (Rmem U R;ém)+ (one is reachable from the other by traversing
Rmem), then A and B need to share a memory address space for them to function correctly, and we
cannot separate them.

Let Rproc = Reomm U Rmem U Ryl Ree = SCC (Rproc) (the Strongly Connected Components
DAG of Rproc). Each node in R corresponds to a subset of the components in the app. Because
are no process-memory flows between the subsets, they can be segregated to different processes,
and these can be privileged differentially.

The dynamic analysis stage is designed to find Rmem,Rcomm and Rproc as well as the permissions
that each component (and process) requires. Rscc can be computed from Rproc. The mapping of
component nodes in Rpoc to nodes in Rsec corresponds to our desired mapping of components to
processes.

3.4 Policies

We wish to construct an IFC policy for inter-component communication and resource use, as defined
in Section 3.1.s

Let Psource,Psink be permissions which protect some APIs. Psource protects an information source
and Py, protects an information sink. Components, or subsets of components, can access these
APIs, in which case we say that they use Piource Or Psink respectively. We then say that Py is
reachable from Psoyrce in the relation R if there is a path on the graph spanned by R (where nodes
are components or subsets of components) from a node which uses Pioyrce to a node which uses
Piink. We say that there is a flow in an app from Psoyrce t0 Psink if information is transferred from
one to the other by the app. We observe that an information flow from Psoyrce t0 Psink €xists in the
app, as measured by our dynamic analysis, only if Py is reachable from Psource in Rsce. If such a
path does not exist, we wish to enforce the absence of such information flow in future executions of
the app on the user’s device.

DroidDisintegrator thus constructs the following policy: (1) A permission is granted to a process
if it is requested by the app and one of the components in the process uses it during the dynamic
analysis. (2) Communication between app processes should only be allowed in the direction of edges
in the graph spanning Rs.. (where each node corresponds to a process).

4 DroidDisintegrator

We developed DroidDisintegrator, a set of tools for performing app decomposition as described in
Section 3. DroidDisintegrator analyzes and transforms apps to IFC constrained versions of these
apps, to be run in an enforcing Android OS. It is an implementation, and automation, of the
app decomposition workflow presented in Section 3.1: dynamic analysis (Sections 4.1 through 4.6),
policy and app decomposition configuration generation (Section 4.7), repackaging of the application
(Section 4.8), and enforcement (Section 4.9).

11

4.1 Dynamic Analysis Overview

DroidDisintegrator performs dual-faceted tracking of inter-component information flow and tracking
of component resource use in apps. Tracking is performed in a modified version of the Android OS,
which preserves all Android functionality and augments it with monitoring of app runtime behavior.
DroidDisintegrator employs three designated subsystems. The first, CommTrack, tracks Android
ICC events that cross process boundaries (i.e., events that correspond to Rcomm edges). The second,
MemTrack, is based on a dynamic taint analysis infrastructure (TaintDroid [EGC*14]) and tracks
cross-component information flows that occur by direct access to the same memory address by
multiple components (i.e., events that correspond to Rmem edges). The third, PermTrack, tracks
the use of permissions by individual components. DroidDisintegrator runs the app and logs the
events captured by these subsystems.

All three information tracking subsystems assume runtime knowledge of the currently running
component. To this end we add a Component Identity (CI) register to the Dalvik Virtual Machine
(DVM) thread state struct. This register holds a unique identifier of the currently-running compo-
nent. This requires instrumenting component entry and exit points with register updates, and also
tracking callbacks registered by components.

DroidDisintegrator is also integrated with Appsplayground, which contributes automatic app
functionality exploration techniques and disguising of the emulator. This allows automatic dynamic
analysis of a given app, and makes analysis scalable and parallelizable.

Section 4.2 describes CI register maintenance. Sections 4.3, 4.4 and 4.5 describe the tracking
subsystems. Section 4.6 discusses the integration with Appsplayground. Section 4.1.1 discusses an
important observation guiding some choices behind the design of CommTrack and MemTrack.

4.1.1 Decomposable Flows

Android ICC facilitates passing Binder objects between components. Components that are in the
same process will thus share a regular Java reference to a local Binder object. When components are
in different processes, one can have a local Binder object reference and the other a remote reference.
The code of the components is oblivious to this distinction, allowing us to separate their processes
without loss of functionality. However, in the analysis stage (in which components are typically in
the same app process), such ICC events incur process memory flows (Rmem edges). In this case we
can, by app decomposition, force the information to cross process boundaries (making it possible
to monitor) without breaking app behavior. We call these decomposable flows.

Another type of decomposable flow occurs when communication via process memory is an API
behavior that is transparent to the developer and can be changed in the enforcing version of the OS.
For example, the Android Shared Preferences mechanism is a key-value map that is serialized to a
file and cached in a static Map variable. Thus, consecutive writes-reads by different components
are process memory flows. This mechanism can, however, be managed by a central Binder object
in the enforcing OS version. It is thus possible to separate processes of components communicating
via shared preferences.

CommTrack and MemTrack are designed to identify and report decomposable flows as Rcomm
edges (by CommTrack) rather than Rpyem edges (by MemTrack). Another interesting approach (for
future work) detecting programming patterns involving process memory flows and automatically
modify app code during repackaging to invoke fewer such flows.

12

4.2 Component Identity

Components in Android, like threads or processes in most operating systems, have entry points
and exit points. These define the context in which code execution is performed by the component.
Entry points and exit points may be added at runtime, when components register callbacks.

CommTrack, MemTrack and PermTrack rely on the ability to recognize the currently running
component throughout the dynamic analysis operation. We maintain this information at the DVM
itself, with two extensions: first, a VM register holding the Component Identity (CI), and second,
a boolean register, the Code Flag (CF) register, which indicates whether the currently executing
method belongs to a class from the app package (and written by the developer) or from the Android
framework, Java library code, etc.

4.2.1 CI Register and object CI

We instrumented the Android OS such that the identity of the component is saved in a designated
DVM register on entry and reset to its previous value on exit. The component identity is represented
by a 32-bit value uniquely identifying it: the String: :hashCode () of the component’s class name?.
During interpreting of bytecode that does not belong to any component, the CI register will contain
0.

Static JNI functions are exposed to allow Java code to read and set the CI register content. It is
maintained by Android framework code as well as DVM code. The following inductive rules specify

how component identity is defined and how the CI register is maintained.

Basis. Every component is implemented, by its author, via a Java class that extends a basic
component class (see Section 2.1). Several predefined methods, which are declared by the parent
class and which the author can implement in the extending class, are the initial component entry
points. The Android framework will call these methods on specific events (e.g., when the user
presses the app icon, or when the phone receives an SMS). The CI register is thus updated upon
entering and exiting these methods.

Inductive step. Component code can register further callbacks for events at runtime. These call-
backs are objects of classes that implement designated interfaces (or extend designated classes)
defined by the Android or Java frameworks. When the event occurs, the framework invokes the
callback, which is a method of the designated interface (or class). Thus, when component code
calls any method and passes an object as a parameter value, the object may contain such a call-
back method. It is therefore considered as running under this component’s identity, and the CI
register should be accordingly updated. For example, consider the code in Listing 1: In this code
line, an anonymous class implementing the interface Runnable is created and an instance is passed
to Thread’s constructor. The thread is then started and calls the run() method of the instance.
run() is defined as part of a component’s code, but is called by a class, that is part of the Java
language. During execution of run(), the CI register should contain the component identity of the
defining component. Such callbacks are very common in Java, and our tracking must handle this
case.We therefore mark any object passed to a method by a component. When its methods are
entered, the component identity register is switched back to the identity of the passing component.

To reflect this logic, we augmented the DVM to attach an object CI to every Java object. This
32-bit value is initialized to 0 upon object instantiation. The first time component code passes an

4Hash collisions are rare but possible. However, they would be detected in the log output, and the analysis could
then be re-run with a re-randomized hash.

13

public class ThreadStarter extends BroadcastReceiver {
Qoverride
public void onReceive(Context context,
Intent intent) {
Runnable runnable = new Runnable() {
void run() {
Log.d("anonymousRunnable",
"thread, created");
} 3
new Thread(runnable).start();
}
}

Listing 1: Example: callback registration

object as a method parameter value, this object’s CI is updated to contain the value in the CI
register at the time of the method call. When entering an object’s member method, it is the CI
register’s turn to be updated: if the object CI is not 0, the VM restores the CI register from it. The
VM then saves the previous CI register value on the stack and restores it on returning from the
method. Once an object’s CI contains a nonzero value, it will not be changed again. The object
component identity is the identity of the first registering component.

4.2.2 Code Flag Register

Most code running under a component identity is not actually contained in the app package classes.
Calls into Java and Android framework libraries still run under the component identity of the
calling component. The distinction between component code written by the developer of the app
and library code is irrelevant when monitoring high-level ICC or resource use. It is important,
however, when using taint analysis for tracking inter-component information flows through the
process memory (see Section 4.4).

We thus add another 1-bit flag to the DVM, called the CF. Its value indicates whether the
currently running code is a part of the app package (and is part of the implementation of its com-
ponents) or is part of the Android framework. Upon method entry/exit (and exception unwinding),
we update the Framework Code Flag according to the code type (package or framework) of the
code pointed at by the instruction pointer. Code type is indicated by the class prefix of its con-
taining method. The prefix is checked against a list of known framework prefixes (“com.android”,
“java.lang”, etc.).

4.3 CommTrack

DroidDisintegrator’s CommTracking subsystem monitors and logs all of the intra-app cross-component
communication events that correspond with edges in Reomm. The subsystem does not track cross-
component communication via direct access to shared content in the process address space (which
is handled by MemTrack; see Section 4.4). By analyzing the resulting log, we infer the relation
Recomm- Monitoring falls into the following categories.

Predefined ICC events. A component invokes an operation (e.g., sends an Intent) that invokes one
of another component’s entry points. To keep track of sender identity in Intent-based ICC, we
instrumented the Intent class to contain a sender component field, updated by the (instrumented)
Intent-sending API implementation. The identity of the intent’s sender is checked before entering

14

the invoked component, and the information flow is logged. We similarly instrument activity results
and log flows when they are read. We instrument the ContentProvider API, which differs slightly in
that it is not Intent based, to log directed information flows on content queries, deletes, insertions,
and so forth. We also capture component runtime registration, a form of ICC in itself.

Communication via Binder. As explained in Section 2.2, when a component sends a Binder call to
another component in its own process, the event should be recorded as an Reomm event. The local
Binder object’s object CI field will typically contain the identity of the component that instantiated
it, and upon the call the identity register will be updated to this identity. In this case, we capture
an Reomm flow from the calling component to the callee®.

Other Communication. We deal similarly with other channels and readable/writable resources:
filesystem, Shared Preferences and Content Providers. If a component writes to such a resource,
which another component later reads from, this is considered a flow between the writing component
and the reading one. We intercept and log file system inodes reads/writes, as well as reads/writes to
content providers and Android’s SharedPrefs mechanism (see Section 4.1.1). CommTrack captures
the read/write accesses, and an analysis of the log produces the flow events. Similarly, possible
flows through the Internet and other information sources that are also sinks are detected by the
later analysis (but use of permissions is captured by PermTrack).

4.4 MemTrack

DroidDisintegrator’s MemTrack module, which is based on TaintDroid [EGC™14], monitors and logs
cross-component communication through process memory (i.e., events that correspond to edges in
Rmem). We built, on top of TaintDroid’s taint propagation, our own tagging of data elements. Our
aim is to keep track of reads and writes of data so that if one component writes data that another
reads, this event will be logged. Consequently, MemTrack differs somewhat from traditional tainting
schemes: data access by component code is a taint sink (for reads) and source (for writes).

Tainting and Taint Storage. Taint is tracked via taint tags, which are 32-bit bitmasks. Each bitmask
bit is mapped to some component identity. To minimize collisions, only components which actually
run within the app are mapped (at runtime) from some available bit; this happens when the CI
register is first updated to contain their identifying value. Apps can have more than 32 components,
but we found that they very rarely execute more than 32 components at runtime within the same
process. (It is straightforward to extend MemTrack’s bitmask size, or add a level of indirection, to
support that case.)

Taint Granularity. TaintDroid alters DVM’s runtime stack and structures underlying Java objects
to allocate a 32-bit taint tag for each data element. A tag is maintained for every method local
variable, method argument, class static field, class instance field, and array. We used TaintDroid’s
taint granularity and changed only the tag value semantics.

The one exception is array handling. TaintDroid maintains one taint tag per array. We em-
piricallyfound that this incurs many falsely reported process memory flows.® Assigning a separate

SWhen the called method’s object is not a Binder object at all, this mechanism can falsely report flows. However,
these falsely reported flows rarely affect the policy construction, because when the object is not a Binder object,
an Rmem flow between the corresponding components will almost always be reported as well as the Rcomm one (see
Section 4.4).

SThis stems from the Android framework’s use of arrays to hold some objects that become tainted by many
components, although different components often only access disjoint array elements. For example, there exists an
array of objects representing a UI View object of every Activity in the process. A Ul view’s reference will typically be

15

tag for every array element incurred such a large overhead that the analysis became too slow to
be practical”. We currently regard process memory flows through arrays as false positives, as they
most likely are. Note that (as discussed in Section 4.10) this can only result in overly restrictive
policies, which can be easily discovered by an additional testing phase, and does not compromise
the soundness of the enforcement.

Taint Sources, Sinks and Taint Propagation. When a component writes to a data element, the VM
turns on the bit representing that component in the data’s taint tag. When a component A reads
a data element D, the taint tag of D is checked by the VM. If it is tainted by components other
than A, then we identify (and log) information flows from those components into A. Whenever
data is manipulated by bytecode, data taint is propagated. This means that every data access by
Java code may be a taint source, a taint sink, require taint propagation or a combination of these.
Therefore tainting and logging of flows are carried out by the DVM itself, and their implementation
is interleaved with taint propagation.

Taint propagation, tainting and logging occur in the DVM opcode implementation and JNI
calls. We deliberately turn off TaintDroid’s taint propagation abilities through file system nodes
and Binder RPCs, since we monitor only flows of data that do not cross process boundaries (inter-
component information flows through these interfaces are monitored by CommTrack).

We classify data access by the DVM opcodes and JNI methods into three types®: reading a value
(possibly written by another component), writing a value (possibly other components will read),
and moving an aggregation (n-ary operator result) of values into a data location (here we read each
of them and write into one taint location). We add handlers for these events and instrument the
DVM to call them, passing the taint tags. Appendix A.2 specifies how each of these access types is
handled.

The handling logic for these data access events changes according to the event type and whether
the VM is running component code (which is a taint source and sink) or other code (such as
framework libraries, which only propagate taint). This is reflected in the CI and CF register values.

To avoid reporting decomposable flows (see Section 4.1.1) as Rmem edges, we nullify taint tags
of shared preferencesvalues (by instrumenting the SharedPreferences implementation) and local
Binder object method arguments”.

4.5 PermTrack

The DroidDisintegrator PermTrack subsystem monitors permission use by individual components.
All permission checks occur within the method checkUidPermission of the Package Manager (PM)
system service or the method checkPermission of the Activity Manager. Both are Binder methods
and can be invoked remotely or locally. An operation typically invokes one of these methods if it
wishes to check the permission of the third party requesting the operation, usually also through a
Binder RPC. We capture calls to these methods, and when a permission is granted we deduce that

tainted with the respective activity’s component identity. The entire array quickly becomes tainted with all Activities’
tags although every Activity only accesses its own view.

"Pebbles [SBLT14] and Spandex [CGLT14| proposed using lazy taint tagging for arrays. This optimization should
be incorporated into DroidDisintegrator as well.

8TaintDroid contains JNI method prototype annotations, which specify how information is expected to propagate
through the method, between the method arguments and return value.

9Thus, we instrumented the DVM to recognize calls to local Binder objects. We do not recursively remove the
taints of arguments, as this can cause missed process memory flows.

16

the component requesting the calling operation used the permission (this also requires maintaining
information about the calling componentfor every Binder RPC call).

We instrument the socket API to record Internet permission use. Accesses to log files, the SD
card, bluetooth and camera devices are recorded as respective permission uses.

4.6 Automated Dynamic Analysis

Appsplayground is a tool for scalable automatic dynamic analysis of Android apps. It employs a Java
app that connects to an emulator running a modified version of the OS and governs app behavior
exploration logic. Appsplayground was designed to trigger, among other things, information flows
from sources to sinks in apps. It features intelligent event triggering for exhaustive exploration of app
functionality and disguise techniques that make running inside the emulator less discernible from
running inside a physical device. We take advantage of these features by merging Appsplayground
with our Android variant.

4.7 Policy Generation

After driving the app in the dynamic analysis emulator, DroidDisintegrator uses information cap-
tured by CommTrack, MemTrack and PermTrack to output a graph depicting Rmem, Rcomm, as
well as component permission use (see Figure 3 and Figure 5). DroidDisintegrator uses a database
with our manual classification (source or sink or both) for each permission. If a new, unclassi-
fied permission is encountered, the DroidDisintegrator user is prompted to classify it at this stage.
A mapping of components to processes is deduced, as described in Section 3.3 (by computing
Rproc = Reomm U Rmem U R-! . and then Ry = SCC (Rproc)). A policy is generated, as described
in Section 3.4.

A bipartite graph depicting the source-to-sink information flows in the app is output (depict-
ing the policy’s security guarantees). Additionally, the Rpoc graph (see Figure 5 and Figure 3) is
output. This graph provides information about the behavior of the application to the DroidDisinte-
grator user. These can help a developer identify possible changes in app structure and component
interaction so that a tighter policy can be enforced. DroidDisintegrator can thus help a motivated
app developer to express security assurances with a structured and enforceable language.

4.8 Repackaging

We unpack the app binary (a signed zip file with the.apk extension, or an APK), and edit the
app manifest. A “process” attribute is added to each component tag in the manifest, specifying
under which process it runs. Further tags are added to the manifest, encoding allowed inter-process
communication and process permissions. We then repackage the app into an APK.

4.9 Enforcement

Package installation. During app installation of a repackaged app on our modified Android platform,
when users are prompted to approve app permissions, they are also informed about information
flows guaranteed not to occur in the app (see Figure 4). These simple-to-understand guarantees
are derived from the app’s embedded policy, and end-users are not burdened with implementation
details about decomposition, components and processes.

17

E— I
B T & 1:04am | | B2 @ 1:06 AM

{Application info

Permissions

Does NOT pass information
from "receive s :

Figure 4: Scrolling down the app permission view, presented on app installation for user approval
and accessible also from the “Application Management” menu.

App runtime. To run components in different processes, we utilize the optional and rarely used
(standard Android-API) “process” attribute, added to component declarations in the repackaged
app’s manifest. This allows running a component or a set of components in a separate, uniquely
named, process. To enforce the IFC policy, we modify Android’s ActivityManager service to monitor
all cross-process ICC and resource use at process granularity (rather than app granularity). The
monitor allows or denies events according to the policy in the app’s Manifest.xml file, and based
on the operation initiator’s process UID as well as its PID (identifying the process within the
app). Operations requiring permissions are allowed if the policy grants the process this permission.
Components are protected with an extra permission to send ICC to their containing process, granted
to the appropriate processes. The monitor does not, itself, handle information flow between the
processes via Linux system calls; this challenge is well-studied and addressed in prior systems such
as Flume [KYB107], ASM’s Aquifer hooks [HNES14, NE13], and others [XSA12, BDD'12]. Thus,
we have reduced the hard intra-app IFC problem to the well-studied inter-process IFC problem.

4.10 Implications of Analysis Error

As previously discussed, the dynamic analysis guiding the policy generation is imperfect and relies on
some heuristics for handling corner cases or critical performance issues. It is essential to understand
their implications. Missed flows (false negatives) can result in overly-restrictive generated policies,
possibly breaking app functionality. Reported flows that do not really occur (false positives) can
result in too-permissive generated policies, which the app curators/reviewers/users may not approve.
But neither break security guarantees: if a policy is approved, the information flow it specifies will
be enforced.

Thus, we err on the side of caution: impaired functionality (especially on the relatively coarse
whole-component level) can be discovered with manual or automated testing of the app, e.g., by re-
running the app analysis and acceptance tests after the decomposition; unsound policy enforcement
would have been much less noticeable and harder to analyze.

Notably, we only aim at capturing flows which are forms of inter-component communication
intended by the developer or important for the app’s legitimate operation. In particular, tracking
implicit flows would be of very little benefit to us: they’re rarely used for intentional inter-component

18

communication, and most techniques for tracking them would simply incur a vast number of false
positives [KHHJ08], making our generated policies trivially permissive. Not tracking implicit flows
does not make DroidDisintegrator more vulnerable, but rather the opposite: if an app developer
uses implicit flows to smuggle information to circumvent app vetting techniques, DroidDisintegrator
will not report this flow in the analysis stage, and simply prevent it in the enforcement stage.

5 Empirical Results

We evaluated DroidDisintegrator on third-party apps from the Android app market, as follows.

We used a snapshot of the Android app market from 2011 (for compatibility with Appsplay-
ground), and chose the 100 apps which use the largest number of permissions. These had 20-48
permissions each, typical for popular apps (e.g., the average number of permissions requested across
the 10 most popular free non-game apps as of 11.2014 was ~34). We ran DroidDisintegrator on
these apps. In 84 of the cases, our fuzzer successfully finished the experiment. Some of the remain-
ing 16 apps crashed multiple times, suggesting problems more serious than unwanted information
flows; in a few cases the fuzzer itself malfunctioned. For these 84 apps, we generated policies and
repackaged them.

Most (43) of the successfully fuzzed apps utilized more than 5 permissions, as detected by
fuzzing. DroidDisintegrator identified and enforced preventable information flows in 20 of these
apps (~46%). We re-ran these apps under the fuzzer after repackaging, and there was no change
in app behavior as far as fuzzing could tell. We manually and heuristically operated them, and did
not observe any broken functionality either. The remaining cases were detected to have information
flows from all sources to all sinks used; in these cases DroidDisintegrator’s policy still revoked the
permissions which aren’t used at all by the app.

The remaining (41) successfully-fuzzed apps utilized very few permissions (5 or less), as detected
by fuzzing, so there were few potential information flows to block. Nonetheless, DroidDisintegrator
identified and enforced preventable information flows in 6 of them.

The apps used 15.2 permissions on average, and after decomposition each component process
only used 4.2 permissions on average. Thus, we greatly reduced decomposed app permissions (to
less than a third of their original number).

The most commonly observed type of a preventable flow is from the RECEIVE_SMS source to
various sinks (internet, storage, etc.). Inspecting these apps, we observe that the entry points and
control flow that handle incoming SMSs indeed have little interaction with the rest of the app.
That means the app could (under Android’s normal permission semantics) forward users’ SMS
messages to rogue parties, but actually do not exploit that capability; DroidDisintegrator enforces
this behavior and conveys it to the user. This is demonstrated in Figure 5.

Policy Learning Performance. Generaring the policy, including fuzzing and dynamic analysis, took
43min (averaged over 100 apps), running inside a Ubuntu 11.10 VM with 4 cores and 8 GB of RAM,
on an Intel Core i7-3720QM 2.6GHz CPU, 32GB of RAM. This is trivially parallelizable, and seems
quite practical for developers, app stores, or CISOs.

Enforcement Performance. The enforcement itself, which is performed on the decomposed version
of apps, has negligible overhead (merely checking membership of a permission in a set, in a code
path that already contains heavyweight RPC). The app decomposition does add an overhead, since
it increases the number of app processes (repackaged apps define, on average, 3.8 processes, instead
of the typical single process), and causes Android to use serialization for some ICC that originally

19

android.permission. android.permission.
GET_ACCOUNTS RECEIVE_SMS

1 l

sms.
SMSReceiver

Activelock ‘ ‘

android.permission.
WRITE_SETTINGS

android.permission. android.permission.

GettingStarted READ_SMS ACCESS_COARSE_LOCATION

DBProvider

AlarmService

data
AlarmReceiver

android.permission.
WRITE_SMS

android.permission.
INTERNET

Figure 5: Inter-component communication and component resource use graph for “Executive Assist”
(“com.appventive.ActiveLock”), a productivity utility. See Figure 3 for notation.

passed its arguments as pointers. Systematic evaluation of these overheads is difficult, due to the
interactive behavior of apps, but we provide the following anecdotal evidence that the overhead is
low.

We performed quantitative comparisons between two environments: one is an emulator with 10
decomposed apps installed (the decomposed environment), and the other is an emulator with the
original (non-decomposed) packages installed (non-decomposed environment). In terms of process
count: when exercising 3 of the installed apps in sequence under the fuzzer, we observe an average
over time of 51.1 active processes in the decomposed environment, versus 50.0 in the non-decomposed
environment. Device and app responsiveness: 8 of the installed apps are registered to the “boot
complete” broadcast event, and 6 of them are registered to the “SMS received” broadcast events.
Handling of these events is sequential: one app must finish before the other begins. Averaged over
10 reboots, the handling time for the “boot complete” event (time from event dispatch until the last
app finishes) is 309 seconds in both environments. Averaged over 100 received SMSs, the handling
time for the “SMS received” event was 0.57 seconds for the non-decomposed environment and 0.61
seconds for the decomposed environment (a 6.5% increase).

6 Conclusions and Future Directions

In this work, we showed how to constrain the behavior and reduce the risk of Android apps, based on
a key observation that the modular component-centered design of apps offers a natural granularity at
which to apply Information Flow Control. In our implemented workflow, apps are first dynamically
analyzed to deduce a policy about their internal information flows, and this policy is embedded in
the app installation package. After installation, the device enforces the policy. We implemented
the analysis tools required by this process, building and improving upon prior research efforts. We
ran our analysis on real-world apps and produced useful enforcement policies for many of them,
reducing both the number of possible information flows within the app and the privileges under
which each component runs.

Our approach and findings open myriad research directions for extensions to new applications
and platforms.

Fuzzing. Policy generation uses dynamic analysis, which relies on exploration of the app’s behavior
using fuzzing. Code coverage and performance may be improved using state-of-the-art fuzzing mech-
anisms such as PUMA [HLN™14] and Brahmastra [BHJ"14], once adapted to triggering information
flows.

20

Taint tracking. Better heuristics and taint-tracking would reduce falsely-reported flows and detect
decomposable flows (see Section 4.1.1), and thus tighten the generated policies. Likewise, static
analysis can be used. Our system is based on the Android 2.1 branch of TaintDroid, and adapting
it to the latest TaintDroid will improve app compatibility and taint accuracy. Analysis support for
Android’s ART runtime is desirable(and probably feasible [Gro).

Beyond Android. Our approach may be applicable to other platforms, especially modern mobile de-
vice platforms that use event-driven frameworks. While Android’s explicit “component” abstraction
is especially convenient, units of similar granularity may defined by the programmer or synthesized
by analyzing data flow from the app’s entry points.

DIFC. Our approach can be extended to Decentralized Information Flow Control, allowing dis-
cretionary access controls and finer-grained, application-dependent labeling of components and
data [KYBT07, KNKT12, JAFT].

Side channels and covert channels. As in most works on information flow control and mandatory
access controls, our system does not address the risk of covert platform channels [Hu92|, or side
channels such as cache attacks [OST06, Per05]. We note that covert exploitation of such channels
is harder in the context of curated app stores.

Enhanced Enforcement Capabilities. It is natural to consider building an Android Security Mod-
ule (ASM [HNES14]) to enhance DroidDisintegrator’s enforcement abilities. Alternatively, Aura-
sium [XSA12] can be used to embed policy enforcement in the app bundle itself.

Android M Dynamic Permissions. In upcoming Android Version 6 (Marshmallow), some app per-
missions are granted at runtime and on-demand. Component process separation can be extended
to leverage such a dynamic security label model, where dangerous information flows are reported
at runtime and approved by the user on-demand.

Declassifiers. Declassifiers are a powerful feature in IFC, allowing otherwise forbidden information
flows to occur under specific, explicit, and carefully-reviewed conditions. For example, the constraint
that “information must not flow from the contact list into outgoing SMS messages” is desirable
but often too restrictive (e.g., it might forbid the application from auto-completing a contact’s
phone number when the user composes an SMS). This may be relaxed into the constraint “contact
information flowing into outgoing SMS messages must be approved by the user before sending”.
The relaxation requires a piece of trusted code (e.g., an Activity) that presents to the user whatever
the application wants to send in an SMS and (upon user approval) invokes the SMS-sending API.
The declassifier’s simple, trusted code can be explicitly designated as such, and bundled in source
form with the app (along with requisite evidence of consistency with the binary) for inspection by
users and app curators.

Acknowledgments. This work was supported by the Check Point Institute for Information
Security; by a Google Faculty Research Award; by the Israeli Ministry of Science and Technology;
by the Israeli Centers of Research Excellence I-CORE program (center 4/11); and by the Leona M.
& Harry B. Helmsley Charitable Trust.

References

[AGL*12] Owen Arden, Michael D George, Jed Liu, K Vikram, Aslan Askarov, and Andrew C
Myers. Sharing mobile code securely with information flow control. In IEEE Sympo-

21

[ARB13]

[ARF*+14]

[AZHL12]

[BBC+13]

[BDD*]

[BDD*12]

[BHJ*+14]

[BIM*15]

[CFB*15]

[CFGW11]

[CGL*14]

[CLM™*07]

stum on Security and Privacy 2012. IEEE, 2012.

Steven Arzt, Siegfried Rasthofer, and Eric Bodden. SuSi: A tool for the fully au-
tomated classification and categorization of Android sources and sinks. Technical
Report TUD-CS-2013-0114, EC SPRIDE, 2013.

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid:
Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for an-

droid apps. In Programming Language Design and Implementation (PLDI) 2014.
ACM, 2014.

Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. Pscout: analyzing
the Android permission specification. In ACM Conference on Computer and Com-
munications Security (CCS) 2012. ACM, 2012.

Aline Bousquet, Jérémy Briffaut, Laurent Clévy, Christian Toinard, Benjamin
Venelle, et al. Mandatory access control for the android dalvik virtual machine.

In ESOS 2013, 2013.

Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, and Ahmad-Reza
Sadeghi. Xmandroid: A new android evolution to mitigate privilege escalation attacks.
Technische Universitdt Darmstadt, Technical Report TR-2011-04.

Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, Ahmad-Reza
Sadeghi, and Bhargava Shastry. Towards taming privilege-escalation attacks on An-
droid. In Network and Distributed System Security Symposium (NDSS) 2012, 2012.

Ravi Bhoraskar, Seungyeop Han, Jinseong Jeon, Tanzirul Azim, Shuo Chen, Jaeyeon
Jung, Suman Nath, Rui Wang, and David Wetherall. Brahmastra: Driving apps to
test the security of third-party components. In USENIX Security Symposium 2014.
USENIX Association, 2014.

Paulo Barros, René Just, Suzanne Millstein, Paul Vines, Werner Dietl, Marcelo
d’Amorim, and Michael D Ernst. Static analysis of implicit control flow: Resolv-
ing java reflection and android intents. In IEEE/ACM International Conference on
Automated Software Engineering (ASE 2015) 2015, 2015.

Yinzhi Cao, Yanick Fratantonio, Antonio Bianchi, Manuel Egele, Christopher
Kruegel, Giovanni Vigna, and Yan Chen. Edgeminer: Automatically detecting im-
plicit control flow transitions through the android framework. In Network and Dis-
tributed System Security Symposium (NDSS) 2015, 2015.

Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. Analyzing
inter-application communication in Android. In International Conference on Mobile
systems, applications, and services (MobiSys) 2011. ACM, 2011.

Landon P Cox, Peter Gilbert, Geoffrey Lawler, Valentin Pistol, Ali Razeen, Bi Wu,
and Sai Cheemalapati. Spandex: Secure password tracking for android. In USENIX
Security Symposium 2014, 2014.

Stephen Chong, Jed Liu, Andrew C Myers, Xin Qi, Krishnaprasad Vikram, Lantian
Zheng, and Xin Zheng. Secure web applications via automatic partitioning. In ACM
SIGOPS Operating Systems Review, volume 41. ACM, 2007.

22

[Docal

[Docb]

[DSP+]

[EGCT14]

[EJMT14]

[FAR*13]

[FCF09)

[FCH*11]

[FGW11]

[FHE"12]

[FWM*11]

[GCEC12]

[GKP]

Android Developers’ Documentation. How do I pass data between Activities/Services
within a Single Application? http://developer.android.com/guide/faq/framew
ork.html#3.

Android Developers’ Documentation. Local service sample. http://developer.an
droid.com/reference/android/app/Service.html#LocalServiceSample.

Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu, and Dan S Wallach. Quire:
Lightweight provenance for smart phone operating systems. In USENIX Security
Symposium 2011.

William Enck, Peter Gilbert, Byung-Gon Chun, Landon P Cox, Jaeyeon Jung, Patrick
McDaniel, and Anmol N Sheth. TaintDroid: an information flow tracking system for

real-time privacy monitoring on smartphones. Communications of the ACM, 57(3),
2014.

Michael D. Ernst, René Just, Suzanne Millstein, Werner Dietl, Stuart Pernsteiner,
Franziska Roesner, Karl Koscher, Paulo Barros Barros, Ravi Bhoraskar, Seungyeop
Han, Paul Vines, and Edward X. Wu. Collaborative verification of information flow for
a high-assurance app store. In ACM Conference on Computer and Communications

Security (CCS) 2014. ACM, 2014.

Christian Fritz, Steven Arzt, Siegfried Rasthofer, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves le Traon, Damien Octeau, and Patrick McDaniel. Highly precise
taint analysis for android applications. EC SPRIDE, TU Darmstadt, Tech. Rep, 2013.

Adam P Fuchs, Avik Chaudhuri, and Jeffrey S Foster. SCanDroid: Automated secu-
rity certification of Android applications. Technical Report, University of Maryland,
20009.

Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner.
Android permissions demystified. In ACM Conference on Computer and Communi-
cations Security (CCS) 2011. ACM, 2011.

Adrienne Porter Felt, Kate Greenwood, and David Wagner. The effectiveness of
application permissions. In USENIX Conference on Web Application Development
(WebApps). USENIX Association, 2011.

Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin, and
David Wagner. Android permissions: User attention, comprehension, and behavior.
In Symposium on Usable Privacy and Security (SOUPS) 2012. ACM, 2012.

Adrienne Porter Felt, Helen J Wang, Alexander Moshchuk, Steve Hanna, and Erika
Chin. Permission re-delegation: Attacks and defenses. In USENIX Security Sympo-
stum 2011, 2011.

Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen. Androidleaks:
Automatically detecting potential privacy leaks in Android applications on a large
scale. In Trust and Trustworthy Computing (TRUST) 2012, volume 7344. Springer,
2012.

Michael I Gordon, Deokhwan Kim, Jeff Perkins, Limei Gilham, Nguyen Nguyen, and
Martin Rinard. Information-flow analysis of android applications in DroidSafe. In
Network and Distributed System Security Symposium (NDSS) 2015.

23

http://developer.android.com/guide/faq/framework.html#3
http://developer.android.com/guide/faq/framework.html#3
http://developer.android.com/reference/android/app/Service.html#LocalServiceSample
http://developer.android.com/reference/android/app/Service.html#LocalServiceSample

[GLST12]

[Gro]

[GZWJ12]

[Har8g)]

[HHJ*11]

[HLN*14]

[HNES14]

[Hu92]

[JAF+]

[jial

[KHHJO8]

[KNK*12]

[KYB*07]

[LBB*15]

Daniel B Giffin, Amit Levy, Deian Stefan, David Terei, David Mazieres, John C
Mitchell, and Alejandro Russo. Hails: Protecting data privacy in untrusted web ap-
plications. In Symposium on Operating Systems Design and Implementation (OSDI)
2012, 2012.

TaintDroid Google Group. Taintdroid for libart. https://groups.google.com/fo
rum/#!topic/taintdroid/WbcrccvjaKg.

Michael C Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang. Systematic detection of
capability leaks in stock Android smartphones. In Network and Distributed System
Security Symposium (NDSS) 2012, 2012.

Norm Hardy. The confused deputy:(or why capabilities might have been invented).
ACM SIGOPS Operating Systems Review, 22(4), 1988.

Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter, and David Wether-
all. These aren’t the droids you're looking for: retrofitting Android to protect data
from imperious applications. In ACM Conference on Computer and Communications
Security (CCS) 2011. ACM, 2011.

Shuai Hao, Bin Liu, Suman Nath, William GJ Halfond, and Ramesh Govindan.
PUMA: Programmable Ul-automation for large scale dynamic analysis of mobile apps.

In International Conference on Mobile systems, applications, and services (MobiSys)
2012. ACM, 2014.

Stephan Heuser, Adwait Nadkarni, William Enck, and Ahmad-Reza Sadeghi. ASM:
A programmable interface for extending Android security. In USENIX Security Sym-
posium 2014. USENIX Association, 2014.

W-M Hu. Lattice scheduling and covert channels. In IEEE Symposium on Security
and Privacy 1992. IEEE, 1992.

Limin Jia, Jassim Aljuraidan, Elli Fragkaki, Lujo Bauer, Michael Stroucken, Kazuhide
Fukushima, Shinsaku Kiyomoto, and Yutaka Miyake. Run-time enforcement of
information-flow properties on Android. In ESORICS 2013. Springer.

Stack Overflow jiangian.lily. Usage of android:process. http://stackoverflow.com/
questions/7142921/usage-of-androidprocess.

Dave King, Boniface Hicks, Michael Hicks, and Trent Jaeger. Implicit flows: Can’t
live with ’em, can’t live without ’em. In International Conference on Information
Systems Security (ICISS) 2008. Springer, 2008.

Palanivel Kodeswaran, Vikrant Nandakumar, Shalini Kapoor, Pavan Kamaraju, Anu-
pam Joshi, and Sougata Mukherjea. Securing enterprise data on smartphones using
run time information flow control. In IEEE International Conference on Mobile Data
Management (MDM) 2012. IEEE, 2012.

Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M Frans Kaashoek,
Eddie Kohler, and Robert Morris. Information flow control for standard OS abstrac-
tions. ACM SIGOPS Operating Systems Review, 41(6), 2007.

Li Li, Alexandre Bartel, Tegawendé Francois D Assise Bissyande, Jacques Klein,
Yves Le Traon, Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and

24

https://groups.google.com/forum/#!topic/taintdroid/WbcrccvjaKg
https://groups.google.com/forum/#!topic/taintdroid/WbcrccvjaKg
http://stackoverflow.com/questions/7142921/usage-of-androidprocess
http://stackoverflow.com/questions/7142921/usage-of-androidprocess

[LGV*09)

[LLW+12]

[MEK*12]

[MGH15]

[Mye99)]

INE13]

INKZ10]

[OLD*15]

[OM12]

[OMJ*13]

[0ST06]

[Per05]

Patrick McDaniel. IccTA: detecting inter-component privacy leaks in android apps.
In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering
(ICSE 2015), 2015.

Jed Liu, Michael D George, Krishnaprasad Vikram, Xin Qi, Lucas Waye, and An-
drew C Myers. Fabric: A platform for secure distributed computation and storage.
In ACM Symposium on Operating Systems Principles (SOSP) 2009. ACM, 2009.

Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. Chex: statically
vetting Android apps for component hijacking vulnerabilities. In ACM Conference
on Computer and Communications Security (CCS) 2012. ACM, 2012.

Riyadh Mahmood, Naecem Esfahani, Thabet Kacem, Nariman Mirzaei, Sam Malek,
and Angelos Stavrou. A whitebox approach for automated security testing of Android
applications on the cloud. In International Workshop on Automation of Software Test

(AST) 2012. IEEE, 2012.

Martin Mohr, Jirgen Graf, and Martin Hecker. Jodroid: Adding android support to
a static information flow control tool. In Proceedings of the 8th Working Conference
on Programming Languages, 2015.

Andrew C Myers. JFlow: Practical mostly-static information flow control. In ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL)
1999. ACM, 1999.

Adwait Nadkarni and William Enck. Preventing accidental data disclosure in modern
operating systems. In ACM Conference on Computer and Communications Security

(CCS) 2013. ACM, 2013.

Mohammad Nauman, Sohail Khan, and Xinwen Zhang. Apex: extending Android
permission model and enforcement with user-defined runtime constraints. In ACM
Symposium on Information, Computer and Communications Security (ASIACCS)
2010. ACM, 2010.

Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and Patrick Mc-
Daniel. Composite constant propagation: Application to android inter-component
communication analysis. In Proceedings of the 37th International Conference on Soft-
ware Engineering (ICSE), 2015.

J Oberheide and C Miller. Dissecting the Android bouncer. SummerCon2012, New
York, 2012.

Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden,
Jacques Klein, and Yves Le Traon. Effective inter-component communication map-

ping in Android with Epicc: An essential step towards holistic security analysis. In
USENIX Security Symposium 2013, 2013.

Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermeasures:
the case of AES. In RSA Conference Cryptographers’ Track (CT-RSA) 2006. Springer,
2006.

Colin Percival. Cache Missing for Fun and Profit. BSDCan, 2005.

25

[PFNW]

[PS12]

[PXY+13]

[RCE13]

[Ros]

[SBLOY]

[SBL*14]

[SC13]

[SDW12]
[SFE10]
[SMO3]
[SRO3]

[TS16]

[WHZ*]|

Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and David Wagner. Addroid:
Privilege separation for applications and advertisers in Android. In ACM Symposium
on Information, Computer and Communications Security (ASIACCS) 2012. ACM.

NJ Percoco and S Schulte. Adventures in BouncerLand: Failures of automated mal-
ware detection within mobile application markets. Black Hat USA 2012, 2012.

Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie. WHYPER:
Towards automating risk assessment of mobile applications. In USENIX Security
Symposium 2013, 2013.

Vaibhav Rastogi, Yan Chen, and William Enck. AppsPlayground: automatic security
analysis of smartphone applications. In ACM conference on Data and Application
Security and Privacy (CODASPY) 2013. ACM, 2013.

Seth Rosenblatt. Why Android won’t be getting App Ops anytime soon. http:
//www.cnet.com/news/why-android-wont-be-getting-app-ops-anytime-soon/.

Kapil Singh, Sumeer Bhola, and Wenke Lee. xBook: Redesigning privacy control in
social networking platforms. In USENIX Security Symposium 2009. USENIX Asso-
ciation, 2009.

Riley Spahn, Jonathan Bell, Michael Lee, Sravan Bhamidipati, Roxana Geambasu,
and Gail Kaiser. Pebbles: fine-grained data management abstractions for modern
operating systems. In Symposium on Operating Systems Design and Implementation
(OSDI) 2014. USENIX Association, 2014.

Stephen Smalley and Robert Craig. Security Enhanced (SE) Android: Bringing flexi-
ble MAC to Android. In Network and Distributed System Security Symposium (NDSS)
2013, 2013.

Shashi Shekhar, Michael Dietz, and Dan S Wallach. AdSplit: Separating smartphone
advertising from applications. In USENIX Security Symposium 2012, 2012.

Asaf Shabtai, Yuval Fledel, and Yuval Elovici. Securing Android-powered mobile
devices using SELinux. IEEE Security & Privacy, 8(3), 2010.

Andrei Sabelfeld and Andrew C Myers. Language-based information-flow security.
Selected Areas in Communications, IEEE Journal on, 21(1), 2003.

Vincent Simonet and Inria Rocquencourt. Flow Caml in a nutshell. In Proceedings of
the First APPSEM-II Workshop. Nottingham, United Kingdom, 2003.

Eran Tromer and Roei Schuster. DroidDisintegrator: intra-application information
flow control in Android apps. In ACM Symposium on Information, Computer and
Communications Security (ASIACCS) 2016. ACM, 2016.

Yifei Wang, Srinivas Hariharan, Chenxi Zhao, Jiaming Liu, and Wenliang Du. Com-
pac: Enforce component-level access control in Android. In ACM conference on Data
and Application Security and Privacy (CODASPY) 2014. ACM.

XDA-Developers. Dianne hackborn explains appops removal. http:
//www.xda-developers.com/source-code-commits-in-android-4-4-2-kot
49h-reveal-flash-sms-attack-fix-and-app-ops-removal/.

26

http://www.cnet.com/news/why-android-wont-be-getting-app-ops-anytime-soon/
http://www.cnet.com/news/why-android-wont-be-getting-app-ops-anytime-soon/
http://www.xda-developers.com/source-code-commits-in-android-4-4-2-kot49h-reveal-flash-sms-attack-fix-and-app-ops-removal/
http://www.xda-developers.com/source-code-commits-in-android-4-4-2-kot49h-reveal-flash-sms-attack-fix-and-app-ops-removal/
http://www.xda-developers.com/source-code-commits-in-android-4-4-2-kot49h-reveal-flash-sms-attack-fix-and-app-ops-removal/

[XSA12] Rubin Xu, Hassen Saidi, and Ross Anderson. Aurasium: Practical policy enforcement
for Android applications. In USENIX Security Symposium 2012, 2012.

[YLL*15] Wei You, Bin Liang, Jingzhe Li, Wenchang Shi, and Xiangyu Zhang. Android im-
plicit information flow demystified. In Proceedings of the 10th ACM Symposium on
Information, Computer and Communications Security. ACM, 2015.

[ZBWKMO06] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Maziéres. Making
information flow explicit in HiStar. In Symposium on Operating Systems Design and
Implementation (OSDI) 2006. USENIX Association, 2006.

[Zda04] Steve Zdancewic. Challenges for information-flow security. In International Workshop
on the Programming Language Interference and Dependence (PLID) 2004, 2004.

[ZWZJ12] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey, you, get off of my market:
Detecting malicious apps in official and alternative Android markets. In Network and
Distributed System Security Symposium (NDSS) 2012, 2012.

[ZZJF11] Yajin Zhou, Xinwen Zhang, Xuxian Jiang, and Vincent W Freeh. Taming information-
stealing smartphone applications (on Android). In Trust and Trustworthy Computing
(TRUST) 2011. Springer, 2011.

[ZZNMO01] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C Myers. Un-
trusted hosts and confidentiality: Secure program partitioning. In ACM SIGOPS
Operating Systems Review, volume 35. ACM, 2001.

A Further details

A.1 A Motivating Example: SMSPopup

We describe our manual information-flow analysis of the open-source app SMSPopup. The app
features customizable pop-up dialogs for displaying incoming SMS and MMS messages, and requests
several permissions. We model these permissions as information sources and sinks as done in
previous Android works [ARB13, AZHL12, FCH"11]. The app thus requests the privilege (and
will be able at runtime) to leak information from every such source to every such sink. However,
our manual inspection indicates that SMSPopup does not actually use all of its information flow
capabilities: there is no need, in the frame of the app’s operation, to transfer information from
every source to every sink. Figure 6 shows the information flows allowed by the app’s requested
permissions, vs. the actual information flows exhibited by the app.

In particular, note that the device permissions allow the app to send contact list information
via outgoing SMS messages, which would be a privacy issue — but the app never invokes this
information flow. The device permissions allow the device’s logs to interfere with SMS sending APIs
through the app, which would be an integrity issue — but the app never invokes this information
flow.

A.2 MemTrack Data Access Handling Logic

As explained in Section A.2, data accesses by the DVM, in opcodes or by JNI calls, are classified
into three categories: Read a labeled element, Write a labeled element, and Move an n-ary operand

27

SMSPopup - De-facto Possible
SMSPopup - Requested Legitimate Information Flows
Information Flow Capabilities

VIBRATE
READ_LOGS* WRITE_SMS

WAKE_LOCK
READ_SMS
READ_SMS_METADATA

Read sending
DISABLE _KEYGUARD address
READ_SMS

READ_CONTACTS READ_SMS_CONTENT

VIBRATE
Read message
body

READ_CONTACT_NAMES

Read all display
names, get a name
for a specific address

WAKE_LOCK

DISABLE_KEYGUARD

—

WRITE_SMS

Figure 6: SMSPopup — Requested vs. Used Information Flow Capabilities

result (for which the arguments are labeled data elements) into some labeled element. The handling
logic for these events is detailed in Listing 2.

A.3 Android Binder

Understanding our analysis framework and its implementation requires understanding how processes
and components actually communicate in Android, using a fairly complicated architecture called
“Binder”. We therefore provide a brief overview of the Binder architecture.

The Android Binder architecture consists of a driver, along with native and Java middleware,
which implement Binder objects. Binder objects support passing their reference between processes
in a mechanism transparent to the programmer. They can be thought of as system-global objects.
Instance methods of Binder objects are executed in the process which instantiated the Binder object.

A Binder object reference is not necessarily globally available. Interestingly, two app processes
can share a new reference to a global object (instantiated within one of them) only through RPCs, as
described below. This implies that the two processes must have previously shared a reference to some
common Binder object. For this reason, there are a few well-known Binder objects, which we’ll refer
to as system services (not to be confused with a Service component, described in Appendix A.5).
These are typically created within the System Server process during system startup. After initiation
they are explicitly registered with the “Service Manager” under a specific name — this is done using
a designated system call into the Binder driver. Any process can attain a proxy reference to such
a well-known named service, by initiating another designated system call to the Binder driver.

To define a global object, a programmer has to define an interface for the remote object, the
remote interface, and separately, an implementation. The interface has to extend the IInterface
interface.

The interface methods can only receive and return objects of specific types. Some of the basic
types — primitive types, String, CharSequence, List, Map — may be passed to and from a remote
method. Moreover, any user-defined Parcelable object (see below) can also be specified in method
prototypes as an argument/return value. Additionally, other remote interfaces may be specified —
which means Binder objects (implementing these interfaces) can also be passed to and from RPC
methods.

28

/* This is the "code flag" (explained in Section 5.1.2).
False when in framework code, true in application code. */
boolean code_flag

/* DVM register containing the identity of the current component
(or NULL if there is none) */
component_identity current_component_identity

// TAINT LOGIC:

read(Taint taint)

{
if (code_flag) {
for identity in componentIdentitiesInBitmask(taint)
logFlowBetweenComponents (identity, current_component_identity)
}
}
write(Taint taint)
{
if (code_flag) {
taint.setBits(
taintBitForComponentIdentity(current_component_identity))
}
else {
taint.setBits(0) // Values written by framework are not tainted
}
}

move(Taint taint_from_1, Taint taint_from_2, ...,
Taint taint_from_n, Taint taint_to)
{
if (code_flag) {
read(taint_from_1)
read(taint_from_2)

read(taint_from_n)
taint_to.setBits(
taint_from_1.getBits() |
taint_from_2.getBits() |
|
taint_from_n.getBits() |
taintBitForComponentIdentity(current_component_identity)
)
}
else { // Standard taint propogation
taint_to.setBits(
taint_from_1.getBits() |
taint_from_2.getBits() |
R
taint_from_n.getBits()
)
}

Listing 2: Propogation primitives pseudocode.

29

User code
(interfaces and
implementations)

Android core

Auto-generated
code

code

IMyCallbackReceiver

+sendBinder(callback:IMyCallback)

I
|
<<interface>> I
I
|

1
|MyCaIIbackReceiverPrnxy
I 1

| MyCallbackReceiverLocal |
I 1
L |

<<interface>>

I
I
J
I
I
I
I
linterface |
I
I
I
J
I
I
I

MyCallbackLocal MyCallbackProxy

— —

—]
1

|
|
|
|
|
v T
|
|
|

<<interfaces>

IMycCallback

Figure 7: Binder object class hierarchy (simplified)

For the basic types (primitive types, String, etc.) — the Binder framework contains methods
that flatten objects of these types into buffers, and methods that unflatten the buffers back into
Java values. This enables passing such an object as a buffer between two processes through the
kernel (through the Binder driver).

Parcelable is an interface similar to Java’s Serializable. It contains a toParcel() method
and a (static) createFromParcel (byte_array buffer) method. This facilitates flattening Parcelable
objects into buffers to be passed between processes similarly to more basic types.

The case of passing Binder objects between processes is more complicated. It is, however, a
crucial part of the architecture, because it is the main facility that is used to actually share Binder
objects between different processes. We therefore explain it in Section A.4.

A.4 Binder Object Propagation

A key to understanding how Binder objects work is understanding how a reference to such global
objects is created and shared between processes.

Binder objects implement some (app-specific) remote interface, which itself extends the IInterface
interface. As mentioned in Section A.3, the remote interface method prototype can specify argu-
ments or return values that implement the IInterface interface. Thus, Binder objects (which
always implement it) can be passed around between processes as arguments to methods of remote
objects.

Figure 7 is a (simplified) example of a class hierarchy, for the two example remote interfaces
IMyCallbackReceiver and IMyCallback. Recall that the user of the Binder framework defines
only the interface and its implementation.

Figure 8 depicts the process of instantiating a Binder object (implementing IMyCallback) in
process A, and passing a reference to Process B. Process B can then invoke an RPC of IMyCallback,
to be executed in Process A.

Within Process A, the Binder object reference for the IMyCallback-implementing object is
simply a reference to the instance of the implementing class. We call this reference a local reference.

30

Process A Kemel Process B

Binder Thread
(loop - read and handle
messages from kernel) callbackReceiver : My[allbackReceiverLocal

T

|
| Binder Middleware
|

any java object : Object I cbr : CallbackReceiverProxy
T T
[

T I T
\ -~
L rE[EIVEJﬂTSSaQE()

|
| |

IMyCallback callback =

| Binder Middleware ‘ | Binder Driver
|
|
| |
Jnew MycallbackLocal(); : l
|
|
|

]
transact(callbackReceiverToken,
] return message

parceledCallback) jioctl(callbackHeceiverfoken) | (mycallbackfeceiverLocal,

1% sendginder(callback)
See () in caption flattenedParceledCB) sendBinderMethodID,
See (*) in gaption parceledcallpack Token)
See (**) in cdption
- P callbackReceiver =
| (MyCallbackReceiverLocal){myCallbackReceiverLocal);

—

callbackProxy =

| new MyCallbackProxy(callbackToken)
Process B can now call

into IMyCallback methods

using the callbackProxy

object (which is a Binder
| | object proxy). Calls will be
L executed in Process A, in
which the callback object
was instantiated.

sendBinder{callbackProxy)

Figure 8: Binder object propagation. (*) parceledCallback is a list of RPC arguments. Here, they
only contain one argument: a pointer to callback. (**) parceledCallbackToken is a buffer of
flattened Parcelable objects which are the method arguments. Here, it’s just a token to callback.

So, to create a Binder object and attain a local reference — Process A simply has to instantiate an
object implementing this class (i.e., MyCallbackLocal).

Assuming that Process A has a reference to a Binder object residing in Process B, called a prozy
reference, it can pass any local reference as an argument to this remote object’s methods if doing
so adheres to the object’s remote interface.

IMyCallbackReceiver does define a method that receives an IMyCallback object as an input
argument. We assume Process B holds a local reference to an IMyCallbackReceiver object, and
Process A has a Remote Reference to this object. Therefore, Process A can initiate an RPC into
its IMyCallbackReceiver reference, which will send Process B a reference to the Binder object
implementing IMyCallback.

In Process B, like in all processes that use the Binder infrastructure, there is at least one Binder
thread. This thread reads messages from the Binder driver and calls into message-handling code.
In our scenario of an RPC from Process A to Process B, the Binder thread in Process B receives
from the kernel a message containing a pointer to the IMyCallbackReceiver object, a method
identifier and the parceled arguments — including the proxy reference to the Binder object. The
Binder middleware casts the pointer into an IMyCallbackReceiver, extracts the arguments from
the parcel, and calls the method indicated by the method identifier.

Under the hood, a proxy reference is actually a handle to a unique token identifying a Binder
object. This handle is received from the kernel, and is wrapped in a class implementing the remote
interface. The implementation of each interface method actually invokes a system call that passes
the handle, method identifier and parceled arguments to the in-kernel Binder driver (see step 3 of
Figure 8). The method identifier and parceled arguments are sent to the process which instantiated
the Binder object.

All of this is transparent; the user of the object does not need to be aware of RPCs underlying
proxy’s interface methods.

31

A.5 Android Inter-Component Communication (ICC)

Components communicate with each other using the system API for “Inter-Component Commu-
nication”. We use the term ICC to denote ICC via Android system services, not to be confused
with Binder IPC or RPC. Component code always runs within a process designated for the app.
However, components exist globally and ICC crosses app boundaries. In fact, every startup of the
app process is a result of cross-app-boundaries ICC with some other app (except for some apps
launched by the system on boot). The other app (sender) in such scenarios will typically (but not
necessarily) be one of the built-in Android OS apps. For example, the “Launcher” app sends a
“Launch” event to the activity corresponding with the icon pressed by the user. The other app can
also be just another app installed on the device, e.g., a social network app can broadcast a global
event once a notification is received — Broadcast Receivers are subscribed to such events. This
provides flexibility for developers.

ICC is mediated by the ActivityManagerService (AM), which exposes an interface for com-
ponent interaction. When an app wishes to use a component (i.e., to use some service, access some
information, send some message, pop a Ul window), it will invoke one of the AM Binder object’s
methods to request this. Ideally, the request should only specify an indication of what to do, which
of the four component types is expected to implement this behavior, and the arguments necessary
to do it (in other words, calls into system services specify policy rather than mechanism).

This specification is usually called an Intent, and class Intent is designed such that its instances
represent such a request. It is up to the system service to resolve which component is most suitable
to perform the request, instantiate (if necessary) a process for the app containing this component,
and finally send the designated Binder object within this process an indication of exactly which
component entry-point to run. For example:

Intent intent = new Intent();

intent.setAction(Intent.ACTION _VIEW, Uri.parse("tel:123456"));

startActivity(intent);

In this case, the call into startActivity indicates to the AM that the calling code intends for an
activity to “display the phone number 123456”. Typically, an Activity from the phone’s Dialer app
will pop up. It is possible for other apps to register for such intents as well. Intent resolution in these
cases generally has intricate rules, some of which have been discussed in previous work [CFGW11].

Content Providers (which expose databases on the device) are not accessed via an Intent
object. Instead of an Intent, a URI of the accessed content is passed (via the API) to the
ActivityManagerService, which resolves content provider targets.

32

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Use Cases and Threat Model
	1.3 Component-level IFC
	1.4 Our Contribution
	1.5 Related Work

	2 Android Background
	2.1 Components in Android
	2.2 ICC and Binder in Android

	3 Our Approach
	3.1 DroidDisintegrator Workflow
	3.2 Discussion: Static vs. Dynamic Analysis
	3.3 App Decomposition Configuration
	3.4 Policies

	4 DroidDisintegrator
	4.1 Dynamic Analysis Overview
	4.1.1 Decomposable Flows

	4.2 Component Identity
	4.2.1 CI Register and object CI
	4.2.2 Code Flag Register

	4.3 CommTrack
	4.4 MemTrack
	4.5 PermTrack
	4.6 Automated Dynamic Analysis
	4.7 Policy Generation
	4.8 Repackaging
	4.9 Enforcement
	4.10 Implications of Analysis Error

	5 Empirical Results
	6 Conclusions and Future Directions
	References
	A Further details
	A.1 A Motivating Example: SMSPopup
	A.2 MemTrack Data Access Handling Logic
	A.3 Android Binder
	A.4 Binder Object Propagation
	A.5 Android Inter-Component Communication (ICC)

