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ABSTRACT
We study the question of protecting arithmetic circuits against
additive attacks, which can add an arbitrary fixed value to
each wire in the circuit. This extends the notion of algebraic
manipulation detection (AMD) codes, which protect infor-
mation against additive attacks, to that of AMD circuits
which protect computation.
We present a construction of such AMD circuits: any

arithmetic circuit C over a finite field F can be converted
into a functionally-equivalent randomized arithmetic circuit

Ĉ of size O(|C|) that is fault-tolerant in the following sense.

For any additive attack on the wires of Ĉ, its effect on the

output of Ĉ can be simulated, up to O(|C|/|F|) statistical
distance, by an additive attack on just the input and out-
put. Given a small tamper-proof encoder/decoder for AMD
codes, the input and output can be protected as well.
We also give an alternative construction, applicable to

small fields (for example, to protect Boolean circuits against
wire-toggling attacks). It uses a small tamper-proof decoder
to ensure that, except with negligible failure probability, ei-
ther the output is correct or tampering is detected.
Our study of AMD circuits is motivated by simplifying

and improving protocols for secure multiparty computation
(MPC). Typically, securing MPC protocols against active
adversaries is much more difficult than securing them against
passive adversaries. We observe that in simple passive-secure
MPC protocols for circuit evaluation, the effect of any active
adversary corresponds precisely to an additive attack on the
original circuit’s wires. Thus, to securely evaluate a circuit
C in the presence of active adversaries, it suffices to apply

the passive-secure protocol to Ĉ. We use this methodology
to simplify feasibility results and attain efficiency improve-
ments in several standard MPC models.
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1. INTRODUCTION

1.1 Overview
The study of fault-tolerant circuits dates back to the work

of von Neumann [33], who considered a model where ev-
ery gate in a circuit can fail with some constant, and inde-
pendent, probability. Subsequent works of Dobrushin and
Ortyukov [12] and Pippenger [31] showed how to construct
fault-tolerant circuits in this model with only a logarithmic
overhead in the worst case and a constant overhead in the
typical case. Other models for fault-tolerant circuits, pro-
tecting against a bounded number of adversarial faults, were
studied in [28, 14, 15, 22, 13, 29, 8, 25, 9].
In the present work we consider the goal of protecting

boolean and arithmetic circuits against adversarial faults
that may apply to all wires in the circuit. Even if one set-
tles for detecting faults rather than fully protecting against
faults, this goal would be too ambitious. Indeed, an at-
tacker can simply rewrite the input or the output of the cir-
cuit without being detected. But there is a natural model,
which is also motivated by the cryptographic applications
discussed later, where achieving this goal is conceivable. In
this model we limit the attacker in two ways:

1. The attacker cannot directly attack the input and the
output to the circuit; instead, the input is fed to a small
(randomized) tamper-proof input encoder and the output
is obtained from a small tamper-proof output decoder.1

1By “small” we mean independent of the circuit complex-
ity of the function being computed (but possibly depending
polynomially on the input/output size). This rules out a
trivial solution where the entire computation is carried out
by tamper-proof hardware.
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2. The class of attacks – i.e., mappings from the original
wire values to the new wire values – is restricted.

Note that (1) alone is insufficient to remove the impossibility,
since it does not rule out completely rewriting the output
of the input encoder or the input to the output decoder,
and (2) alone is insufficient since it does not rule out direct
(albeit restricted) attacks on the input or output.
We instantiate (2) by considering additive attacks. Given

an arithmetic circuit over a finite field F, we allow an adver-
sary to“blindly”add a field element of his choice to each wire
in the circuit. In the case of boolean circuits, this amounts
to toggling an arbitrary subset of the wires. Such additive
attacks were previously considered in the context of error-
correcting codes by Karpovsky et al. [26] and more recently
by Cramer et al. [7], who constructed algebraic manipula-
tion detection (AMD) codes which that such attacks.2 In
this work we extend the notion of AMD codes, which pro-
tect information against additive attacks, to AMD circuits,
which protect computations against such attacks.
We will start by defining a simpler notion of security

against additive attacks (see Definition 1.1) that does not
use any tamper-proof components (i.e., only the restriction
(2) from above is used), but (inevitably) allows additive at-
tacks on the input and output of the circuit. We show how
to compile any arithmetic circuit C over a large finite field F

into a functionally equivalent randomized arithmetic circuit

Ĉ of size O(|C|) which is secure in this sense. The effect any

additive attack has on the output of Ĉ can be simulated, up
to O(|C|/|F|) statistical distance, by applying a (random-
ized) additive attack to the input and output alone. Thus,

as far as additive attacks are concerned, Ĉ is essentially as
good as a tamper-proof implementation of C in which only
the input and output are exposed.
Combining the above construction with small tamper-proof

encoder and decoder for AMD codes, the input and output
can be protected as well. That is, any arithmetic circuit C
over a large finite field can be compiled into a functionally
equivalent randomized circuit of comparable size that uses
small tamper-proof input encoder and output decoder, and
is guaranteed to either produce the correct output of C or
set an error flag, except with negligible failure probability.
This construction has an additional security feature that will
be useful for our motivating applications: Even in the pres-
ence of an additive attack, the field elements fed into the
output decoder (and in particular the final output) reveal
essentially nothing about the input x beyond C(x).

The above construction offers no security guarantees when
F is small. For the general case we present a more complex
construction which uses small tamper-proof encoder and de-
coder to ensure that, except with negligible failure probabil-
ity, either the output is correct or tampering is detected.
More concretely, to achieve 2−σ error probability, the size of

the AMD circuit Ĉ is |C| ·poly(σ). This construction can be
used for protecting boolean circuits against wire-toggling at-
tacks. However, here we do not realize the stronger security
feature discussed above.

2In [7], algebraic manipulation detection codes were defined
over an Abelian group, where the only manipulation allowed
is an additive attack. We too are considering additive at-
tacks, but since we work over a field (which contains a multi-
plication operation as well), a more appropriate term in our
context would be “Additive Manipulation Detection” codes.

Cryptographic applications of AMD circuits. Our
study of AMD circuits is further motivated by observing that
they are useful for the design of protocols for secure multi-
party computation (MPC). An MPC protocol allows two or
more mutually distrusting parties to perform a distributed
computation on their local inputs without compromising the
secrecy of the inputs or the correctness of the outputs. Fol-
lowing the seminal works from the 1980s that established the
general feasibility of secure computation [34, 17, 3, 6, 32],
significant research efforts have been invested into studying
efficiency questions in this area.
It is typically much easier to secure MPC protocols against

passive adversaries, who may try to learn information about
secret inputs but do not otherwise deviate from the pro-
tocol, than against active adversaries who may arbitrarily
deviate from the protocol. The security of protocols that
were only designed to withstand passive attacks may break
down completely if the adversary is active. While there are
general techniques for strengthening security against passive
attacks into security against active attacks (most notably,
the “GMW paradigm” [17]), these involve a considerable
overhead and do not apply at all to the type of protocols
considered here.
Our key observation is that in natural MPC protocols that

offer information-theoretic security against passive attacks,
any cheating strategy of an active adversary can be mod-
eled as an additive attack on the underlying circuit. This
holds both for protocols in the setting of an honest majority,
such as the“BGW protocol” [3] and its more efficient variant
from [11], and for protocols in the setting of no honest ma-
jority, such as variants of the “GMW protocol” over an ideal
oblivious transfer oracle [17, 16] or an OLE oracle3 [21].

The above observation gives rise to a novel methodology
for the design of MPC protocols with security against ac-
tive adversaries. Instead of designing a complex protocol
for evaluating f that explicitly protects against active at-
tacks, apply a simple protocol, which was only designed to
protect against passive attacks, to evaluate an AMD circuit
for f . (The role of the input encoder and the output decoder
can be emulated via local computation and does not require
interaction.) Thus, the most challenging aspect of MPC pro-
tocol design is reduced to the arguably cleaner problem of
AMD circuit design.
We demonstrate the usefulness of this methodology by

applying it to simplify and improve on previous results in
the area of MPC. We derive the feasibility of active-secure
MPC in the presence of an honest majority [32] from the
much simpler passive-secure BGW protocol [3], as well as
the feasibility of active-secure MPC protocols with no honest
majority [17, 27, 20, 21] (given an OLE oracle) from their
much simpler passive-secure counterparts. We also obtain
a new feasibility result for MPC with no honest majority
using a corruptible source of correlated randomness. On the
efficiency front, we apply our methodology to a simplified
variant of a passive-secure protocol from [11] to obtain a
simpler and more efficient alternative to a recent protocol
from [4]. We also obtain the first active-secure two-party
protocol for evaluating an arbitrary arithmetic circuit over
a large field using only a constant number of calls to an OLE
oracle for each gate in the circuit.

3An OLE oracle receives a, b ∈ F from one party and x ∈ F

from another, and returns ax+ b to the latter. OLE can be
viewed as an arithmetic generalization of oblivious transfer.
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1.2 Our contribution
We now give a more detailed outline of our results. In

Section 1.2.1 we summarize results on protecting circuits
against additive attacks and in Section 1.2.2 we summarize
the applications to secure multiparty computation.

1.2.1 Protecting circuits against additive attacks
We start by defining our main notion of security with re-

spect to additive attacks. Let f : Fn → F
k be a function to

be computed. We say that a randomized arithmetic circuit4

Ĉ is an ε-secure implementation of f if Ĉ correctly computes
f when it is not attacked, and moreover any additive attack

on Ĉ has the same effect on the output of Ĉ (up to an ε sta-
tistical error) as applying some additive attack to the inputs
and outputs alone:

Definition 1.1 (Additive-attack security). A ran-

domized circuit Ĉ : Fn → F
k is an ε-secure implementation

of a function f : Fn → F
k if the following holds:

• Completeness. For all x ∈ F
n, Pr[Ĉ(x) = f(x)] = 1.

• Additive-attack security. For any circuit C̃ obtained by

subjecting Ĉ to an additive attack, there exists ain ∈ F
n

and a distribution Aout over F
k such that for any x ∈ F

n

it holds that

SD
(
C̃(x), f(x+ ain) +Aout

)
≤ ε,

where SD denotes statistical distance between two distri-
butions.

We extend the definition to the case where f is a randomized

function by requiring that the output distribution of Ĉ(x) and

f(x) be identical. We say that Ĉ is an ε-secure implemen-

tation of a circuit C if Ĉ is an ε-secure implementation of
the (possibly randomized) function f computed by C.

In Sections 4 and 5 we prove that every circuit C over a large

finite field can be compiled into a circuit Ĉ that is secure
against additive attacks.

Theorem 1.1. For any field F and (possibly randomized)
arithmetic circuit C : Fn → F

k there exists a randomized
circuit Ĉ : Fn → F

k such that Ĉ is an ε-secure implementa-

tion of C where ε = O(|C|/|F|). Moreover, |Ĉ| = O(|C|).
The notion of additive-attack security in Definition 1.1

above still allows for an attack on the inputs and outputs of
the circuit. This is because the adversary is allowed to attack
every wire in the circuit, and in particular input and output
wires. Thus, we need a randomized, tamper-proof input
encoder Enc and output decoder Dec in order to prevent
attacks against the inputs and outputs. We would like the
size of Enc and Dec to be kept as small as possible (and in
particular much smaller than the circuit being computed).
Notice that even in the presence of a decoder that cannot

be attacked, the adversary is still allowed to attack all the
wires leading from the circuit to the decoder. Thus, we
cannot hope for correcting the result following an additive

4An arithmetic circuit consists of field addition, subtraction,
and multiplication gates. If it is randomized, it may also in-
clude randomness gates that output uniformly random field

elements. We write Ĉ : Fn → F
k to indicate that the input

of Ĉ consists of n field elements (not including randomness
gates) and its output consists of k field elements.

attack but must settle for a weaker guarantee of detecting the
attack. We capture this by allowing Dec to have a special
output, denoted flag, where if this output is nonzero this
means that an attack has been detected.
The circuits Enc and Dec will perform an AMD encoding

of the input and an AMD decoding of the output, respec-

tively. The circuit Ĉ, which gets input from Enc and pro-
duces output for Dec, is obtained by applying Theorem 1.1
to the circuit C ′ obtained from C by applying an AMD de-
coder to its input and an AMD encoder to its output.
Theorem 1.1 does not provide any security guarantees for

circuits over small fields. In particular, it cannot be used to
protect boolean circuits. To handle general fields, we need
to rely on a small, tamper-proof output decoder. Moreover,
unlike the previous construction, here we only guarantee the
correctness of the output and do not provide any guarantees
regarding the secrecy of the input in the presence of additive
attacks. Below we define the stronger notion of correctness-
without a tamper-proof input encoder. (As before, the input
can be protected by an input encoder.) This feature will be
useful when applying a composition-based approach for con-
structing AMD circuits in this setting.

Definition 1.2. Let F be a finite field and let f : Fn →
F
k. We say that a pair of circuits (Ĉ,D) are an ε-correct

implementation of f with a decoder if the following holds:

• Completeness. For all x ∈ F
n, we have Pr[D(Ĉ(x)) =

(0, f(x))] = 1.

• Additive-attack correctness. For any circuit C̃ obtained

by subjecting Ĉ to an additive attack there exists ain ∈ F
n

such that for all x ∈ F
n

Pr
[
D(C̃(x)) /∈ ERR ∪ {(0, f(x+ ain))}

]
≤ ε

where ERR = {(z′, z) : z′ ∈ F \ {0}, z ∈ F
k} and the

probability is taken over the internal randomness of C̃.

In the full version we prove the following theorem.

Theorem 1.2. For any field F, positive integer σ and

arithmetic circuit C : F
n → F

k there exist (Ĉ,D) that
form an ε-correct implementation of C with a decoder, where

ε = 2−σ · |C|, |Ĉ| = |C| · poly(σ), and |D| = k · poly(σ).
Notice the differences between Theorems 1.1 and 1.2 above.
Theorem 1.1 guarantees security for arithmetic circuits over
large fields while Theorem 1.2 achieves the weaker notion
of additive-attack correctness, which allows information to
leak via the error flag, but without requiring the underlying
field to be large. In particular, Theorem 1.2 can be used
over the binary field.

1.2.2 Multiparty computation via AMD circuits
The notion of AMD circuits is motivated by the following

application to secure multiparty computation (MPC). Our
goal is to construct MPC protocols that are secure against
active adversaries, starting from those which are secure only
against passive adversaries. Unlike the prevalent approach
of modifying the protocol itself to directly handle any de-
viations of an active adversary, our approach is to use the
protocol as it is, but apply it to a modified circuit. That is,
given an MPC protocol, secure against passive adversaries,
for a function f computed by a circuit C, we apply the same
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Adv Resilience Security Communication complexity Model Ref

passive |T | < n/2 perfect O(n2|C|) plain [3]

passive |T | < n/2 perfect O(n|C|+ n2) plain [11]

passive |T | < n perfect O(n2|C|) for boolean circuits OT [17]

passive |T | < n perfect O(n2|C|) OLE [21]

active |T | < n/2 statistical poly(n) · |C| plain [32]

active |T | < n/2 statistical O(n|C|+ n2 log n · dC) + poly(n) plain [4]

active |T | < n/2 statistical O(n2|C|) plain Theorem 1.3

active |T | < n/2 statistical O(n|C| + n2) plain Theorem 1.4

active |T | < n statistical O(n2|C|+ log |F| · dC) OT+OLE [21]
active |T | < (1/2− ε)n statistical O(log n · |C|) + poly(n, dC) plain [10]

active |T | < n statistical O(n2|C|) OLE Theorem 1.5

active |T | < n or T = {dealer} statistical O(n2|C|) plain Theorem 1.6

Table 1: Comparison of information-theoretic MPC protocols for arithmetic circuits. In the above, n is the
number of parties, ε is an arbitrary small positive constant, C is an arithmetic circuit over a finite field F, dC
is the multiplicative depth of C, and T is the set of parties corrupted by the adversary. Statistical security
means that the protocol securely realizes C (with abort) with at most O(|C|/|F|) simulation error. The
communication complexity column counts the total number of field elements that are communicated between
the parties (where in the plain model we assume only the availability of secure point-to-point channels). An
OLE oracle (an arithmetic generalization of OT) receives a, b ∈ F from one party and x from another, and
returns ax+ b to the latter. The results highlighted in boldface are new.

protocol to a modified circuit̂ CAMD. The circuit̂ CAMD, in
addition to computing the function, is also responsible for
handling any consequences resulting from the adversary’s

deviations from the protocol. The circuit ĈAMD will be es-
sentially an additively secure version of the original circuit;
we show that, for several simple MPC protocols from the lit-
erature that were only designed to provide security against
passive adversaries, this approach suffices to handle general
active adversaries. In the following we describe different ap-
plications of this methodology in the context of prior results
(see summary in Table 1).
For simplicity we consider an MPC model where the ad-

versary can abort the execution of the protocol, and do not
attempt to provide guaranteed output delivery. The latter
can be achieved when there is an honest majority and a
broadcast channel is available [32].5 We note, however, that
protecting against active attacks is highly nontrivial even
in this setting, and moreover the efficiency comparison with
previous works takes this simpler model into account.
We begin by deriving a simple version of the result of [32],

for MPC in the presence of an honest majority, from the
passive-secure BGW protocol with n = 2t+ 1 parties.

Theorem 1.3. For any n-party functionality f represented
by an arithmetic circuit C over a sufficiently large F there
exists a protocol π that ε-securely computes f with abort in
the presence of an honest majority for ε = O(|C|/|F|). The
protocol involves communication of O(n2|C|) field elements.

Here and in the following, one can eliminate the dependence
of the error on the field size by using an extension field. This
results in a multiplicative overhead of at most σ for reducing
the error to 2−σ.

Next, we obtain a more efficient variant which has a com-
munication complexity of O(n|C|+ n2) field elements. This
asymptotically matches the communication complexity of
the best known passive-secure protocol from [11], and is ob-
tained by applying our methodology to this protocol.
5Our protocols can be modified to have this feature, when-
ever it is achievable, by using standard techniques; however,
the details are beyond the scope of this work.

Theorem 1.4. For any n-party functionality f represented
by an arithmetic circuit C over a sufficiently large F there ex-
ists a protocol π with communication complexity of O(n|C|+
n2) field elements, where π ε-securely computes f with abort
in the presence of an honest majority for ε = O(|C|/|F|).
This gives a simpler alternative to a recent protocol from [4]

and improves its complexity by eliminating a quadratic over-
head for each layer of the circuit, as well as a large polyno-
mial additive term. See Table 1.
Next, we tackle the task of secure multiparty computation

in the presence of an active adversary without an honest ma-
jority. Unfortunately, this task is impossible to achieve for
arbitrary circuits in the plain model. Thus, we are forced
to use some kind of a hybrid model or have an honestly-
executed input-independent preprocessing phase which is
done before the execution of the protocol. In the full version
we present results for secure multiparty computation using
an arithmetic generalization of the OT-hybrid model, called
the OLE-hybrid model [30, 21] (where an oracle receives
a, b ∈ F from one party and x from another, and returns
ax+ b to the latter). In addition, we also present our results
in the preprocessing model.
Concretely, we use an arithmetic version of the GMW

protocol [17, 21] and obtain an n-party protocol for se-
curely computing any functionality (represented by an arith-
metic circuit C), without requiring an honest majority, using
O(n2|C|) calls to the OLE oracle. This improves over the
protocol of [21] that inherently requires Ω(σ) additional or-
acle calls for achieving 2−σ-security, regardless of the field
or circuit size.

Theorem 1.5. For any n-party functionality f represented
by an arithmetic circuit C there exists a protocol π in the
OLE-hybrid model that O(|C|/|F|)-securely computes C with
abort. Moreover, π invokes the OLE oracle O(n2|C|) times.

Finally, we address the goal of secure multiparty compu-
tation in the preprocessing model. We present a protocol
for securely computing an n-party functionality (again rep-
resented as an arithmetic circuit C) that utilizes a prepro-
cessing phase which runs before the computation of f starts
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and does not depend on the inputs to f . This phase can be
implemented using an additional party called the dealer that
sends correlated randomness to the parties. We strengthen
previous results in the preprocessing model [21, 5, 18], which
assume the dealer to be honest, by providing security when
either the dealer or any subset of the other parties may be
corrupted (though not both).

Theorem 1.6. For any n-party functionality represented
by an arithmetic circuit C over F, there exists a protocol
π that uses an additional dealer, such that π is an ε-secure
protocol for computing C with abort against an active adver-
sary controlling either the dealer or any other parties, where
ε = O(|C|/|F|). The dealer in π only distributes correlated
randomness to the other parties.

2. OVERVIEW OF TECHNIQUES

2.1 Additive-attack security
We first present our result for additive-attack security (see

Section 4 for details) for a computation over a large field F.
Suppose we are given an arithmetic circuit C. In its secure

version Ĉ, every wire of C is paired with a wire that carries
a “MAC tag.” Each gate in C is replaced by a small gadget
which computes the original gate’s output as well as a MAC
tag for it; further, this gadget accepts the MAC tags of the
inputs to the original gate, and carries out a MAC verifica-
tion computation. Note that this verification circuitry itself
is open to additive attacks. Nevertheless, we can arrange

that Ĉ will produce a random output if the MAC tag veri-
fication fails for a wire anywhere in the computation.
In the following we identify the gate g with its result; the

meaning will be clear from the context.

The basic construction. For a gate’s output wire g, its
MAC value will simply be g · vd, where v is a randomly gen-
erated element of the underlying field F (fixed to the same
value for all gates), and d is the degree of the wire g (as a
polynomial in the input variables). This MAC has property
that multiplications can be performed on the MAC value
homomorphically to obtain a value that can correspond to
a MAC value of the result of a multiplication. Updating the
MAC for an addition and subtraction gate is implemented
using a simple gadget. The consistency check is implemented
as follows. We first compute the result of the original gate, g.
Next, we compute the MAC value in two ways. The first way
is by directly multiplying g to vd (in turn computed from
v). The second way is using the MAC values of the inputs
(homomorphically for multiplication and via a simple gad-
get for the case of addition and subtraction). We then check
that the values are equal: more precisely, in each gate we
take the difference of these two values, and linearly combine
them across all gates using random coefficients; the result
– which is a random field element if any inconsistency was
detected, and 0 otherwise – is added to the final outcome.

We show that any additive attack on Ĉ is either equivalent
to an additive attack on the input wires and output wires
only, or results in the output being random, up to O(d/|F|)
statistical distance from the uniform distribution. Note that
if the field is large (i.e., is of size exponential in the security
parameter) and if d is small (for e.g., polynomial), we obtain
negligible error in security. The security of the construction
requires that the underlying circuit C be such that for every

gate in C, the joint values of its two inputs should be almost
uniformly distributed over F × F. This is ensured by first
compiling C into an appropriately randomized circuit (see
below).
One problem with the above basic construction is that

the security error grows with the degree of the circuit. Since
the degree of a circuit can be exponential in its depth, this
construction does not yield a full solution to our problem.
However, we show that bootstrapping from this construction
for low-degree circuits, we can indeed obtain a construction
that is secure for all polynomial-sized circuits (see below).

The randomization process. As noted above, the basic
construction relies on the inputs to each gate of the given
circuit being uniformly random. We can enforce this as fol-
lows. Each wire a inside the circuit C will be replaced by
two wires, carrying values a+r1 and a+r2, where the mask-
ing values r1 and r2 are generated as random field elements
(that are the same throughout the circuit). Next, we will
replace each multiplication and addition gate with a gad-
get that will get as input (a + r1, a + r2, b + r1, b + r2) and
output either (ab + r1, ab + r2), (a + b + r1, a + b + r2) or
(a − b + r1, a − b + r2) respectively. These gadgets have
the property that the inputs of every internal gate are com-
pletely random. To complete the modification of the circuit,
two additional layers are added. First, a layer of addition
gates is added to the input wires to carry out the encoding.
Next, a layer of subtraction gates is added to the output
wires to carry out the decoding. Note that the inputs to
the gates in these additional layers do not have the ran-
domness property we set out to ensure for every gate (since
the inputs and outputs are not random). However, attacks
on these addition and subtraction gates are equivalent to
attacks on the inputs and outputs of the circuit which are
permitted by Definition 1.1.

From low-degree circuits to arbitrary circuits. Ob-
serve that additive-attack security could be easily achieved
if we were allowed to use tamper-proof gadgets to implement
each gate. Then each gate can be replaced by a tamper-proof
component that gets two inputs encoded using an AMD code
and, after decoding them, computes an AMD encoding of
the gate’s result. In our final construction, we implement
these gadgets using the above construction for low-degree
circuits and obtain a construction for arbitrary circuits.

2.2 Handling small fields
Our constructions for additive-attack security inherently

fail when the underlying field is small, even if we were will-
ing to tolerate a small constant error (see full version for de-
tails). We present an alternative construction that achieves
additive-attack correctness over small fields, with negligible
error. Recall that correctness prevents the attacker from
causing the circuit to output a wrong value without being
detected.

Basic construction without a decoder. Our final con-
struction will achieve additive-attack correctness using a
small tamper-proof output decoder. But first, we present a
constant error construction that does not use any decoders
but allows (inevitably) both inputs and outputs to be at-
tacked. Later we will show how to amplify the correctness
(and also improve the efficiency) of this construction, and
meet the requirements of Definition 1.2, by relying on a small
tamper-proof output decoder.
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The basic idea is that our new circuit would compute not
only the output of the original circuit, but also a proof that
the output is correct; at the end of the computation, this
proof will be verified by another part of the circuit. We need
a simple proof system that can be implemented in such a way
that soundness holds even when the verifier as well as the
prover could be under (additive) attack.6 Our proof system
follows in the pattern of the Hadamard PCP system of [1],
which turns out to have the linearity properties suitable for
our purposes. However, we cannot use this PCP system as it
is, since the proof is exponentially large. We use an alternate
compact representation of the proof that suffices provided
the prover indeed computes prescribed linear functions of a
purported witness and the verifier’s queries. This condition
on the prover is enforced by a“matrix multiplication gadget”
(see below). The verifier’s computation is simple and results
in an error flag to be set (to a non-zero value) with at least
a constant probability, if the proof is not valid.
It remains to ensure that under additive attack, the prover

is restricted to computing the correct linear functions (but
possibly using an invalid witness). This is achieved using
the following gadgets.

The multiplication gadgets. We sketch our ε-correct
implementation (without output decoder) of a matrix-by-
vector multiplication. For this, first we construct a scalar-
by-vector multiplication gadget.
The inputs to a scalar-by-vector multiplication gadget con-

sist of a vector v and a scalar x, the output is vx. The idea
of this construction is to make the circuit compute z = vx
and q′ = (r · v)x where r is a random vector. To verify that
r · z = q′, we compute f = rz − q′ as an error flag. We
show that any attack that does not correspond to an addi-
tive attack on the inputs and outputs of the scalar-by-vector
multiplication gadget will cause the flag to be set randomly.
We next proceed to the matrix-by-vector multiplication

gadget. The inputs to such a gadget are a matrix M and
a vector x, and the output is z = Mx. We implement this
gadget using the scalar-by-vector multiplication gadget. The
main idea is as follows: we treat the columns of M as vec-
tors and multiply each column with the required coordinate
of x using the scalar-by-vector multiplication gadget. After-
wards, we sum up these intermediate values to obtain the
output of the matrix-by-vector multiplication. Since any at-
tack on the scalar-by-vector multiplication gadget is equiv-
alent to an attack on its inputs and outputs and since the
matrix-by-vector multiplication gadget only sums up the re-
sults of the scalar-by-vector multiplication gadget, it will be
the case that any attack on the matrix-by-vector multipli-
cation gadget is either equivalent to an attack on its inputs
and outputs or it causes its error flag to become non-zero
with constant probability.
Using this gadget to implement the prover in the above

outline, we obtain the following result.

Theorem 2.1 (informal). Any circuit C over a finite
field F admits a 0.997-correct implementation without output

decoder, Ĉ, where |Ĉ| = O(|C|2).
Correctness amplification. For small fields (in partic-
6Even if we allowed a small tamper-proof decoder (which we
do not for this basic construction), it would not be feasible
to house the verifier there, since the verifier would be at least
as large as the original circuit itself; allowing such a large
tamper-proof component trivializes the problem.

ular, the binary field), the above construction has a high
error probability. A naive attempt at reducing the error to
εσ would be to repeat the ε-correct construction σ times,
and then use a (tamper-proof) decoder to check for consis-
tency. However, it is possible that different instances will
be operating on different inputs, and therefore no amplifica-
tion will be achieved (see full version). This problem can be
solved by asking each instance of the construction to output
its input in addition to the result and then using a decoder
to verify that all the inputs are consistent. However, in this
case the complexity of the decoder will be polynomial in the
input size. Keeping the tamper-proof decoder size virtually
independent (up to logarithmic factors) of the input size is
crucial for the efficiency improvement we discuss next. Thus,
we use a family of (almost pairwise independent) hash func-
tions such that the circuit will output a hash digest of its
input instead of the actual input. Since input consistency
is still verified, attacks that cause different instances of the
construction to operate on different inputs will cause incon-
sistency in the hash digests, and the decoder will then set
the error flag wire to be non-zero.

Theorem 2.2. Any circuit C : Fn → F
k admits a 2−σ-

correct implementation (Ĉ,D) where |Ĉ| = |C|2 ·poly(σ) and
|D| = k · poly(σ).
From quadratic to linear overhead. The above con-
struction has quadratic overhead in the circuit size, since we
use parts from the PCP prover of [1]. In particular, similarly
to [1], our construction will compute all possible multiplica-
tions of two intermediate wires inside the circuit. We im-
prove this using “bootstrapping”, as follows. We go over the
gates of C in topological order. For each input gate, we ap-
ply the above construction to the single-wire identity circuit,
yielding an ε-correct gadget, and a corresponding decoder.
Then, for each subsequent gate g, we consider the small cir-
cuit C′ consisting of the decoders corresponding to the two
gates of upstream of g, along with g itself, and apply the
above construction to C′ to yield an ε-correct gadget and a
new decoder, and so on. These are wired together. Finally,
the decoders corresponding to the output gates, taken to-
gether, are considered the decoder for the resulting ε-correct
implementation of C. Since the substitution replaces a gate
with a small gadget whose size is independent of C, the re-
sulting circuit size grows linearly with that of |C|.

Theorem 2.3. Any circuit C : Fn → F
k admits a (2−σ ·

|C|)-correct implementation (Ĉ,D) where |Ĉ| = |C| ·poly(σ)
and |D| = k · poly(σ).
2.3 Secure multiparty computation
We review the main techniques used for applying AMD

circuits towards secure computation in the presence of an
active adversary, as discussed in Section 1.2.2.

Protecting the computation of circuits. We start from
a protocol π that evaluates a circuit C with security against
passive adversaries. We prove, for several useful protocols π,
that when π is executed in the presence of an active adver-

sary, π actually computes a circuit C̃ that is the same as C
up to some additive attack that is chosen by the adversary.
Thus, by replacing the circuit C with an additive-attack

secure implementation Ĉ of C we obtain that any active at-
tack on the protocol corresponds to an additive attack on
the inputs and outputs of C.
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Protecting the inputs and outputs. To protect the in-
puts and outputs of C against additive attacks, we construct
another circuit CAMD from C so that CAMD gets its inputs
in some AMD code, decodes them, and then applies C. Fi-
nally, CAMD encodes the outputs of C using an AMD code.
In addition, if CAMD gets inputs that are not valid AMD
encodings due to an additive attack by the adversary, CAMD

sets a special output flag to be random. This will notify the
honest parties that they should abort the computation since
the results might have been corrupted by the adversary.

The final protocol. We construct an active-secure MPC
protocol π′ for C as follows. First, all the parties locally en-
code their inputs using an AMD code. Then they invoke π

on an additive-attack secure implementation ĈAMD of CAMD.
Finally, the parties locally decode the outputs of CAMD ob-
tained from the execution of π and abort if the decoding
fails or if the error flag is nonzero. The security of π′ is
argued as follows. Notice that by the properties of π, the
adversary is limited to only performing additive attacks on

ĈAMD. Since ĈAMD is additive-attack secure, these attacks
are equivalent (up to small statistical distance) to additive
attacks on the inputs and outputs of CAMD. Finally, no-
tice that any additive attack on the inputs and outputs of

ĈAMD will be detected by the AMD code, causing the honest
parties to abort.

3. RELATED WORK
The goal of securing cryptographic hardware against ac-

tive attacks has motivated different models for fault-tolerant
circuits that mainly aim to protect the secrecy of the data
stored inside the circuits. All prior works along this line
somehow restrict the attacker so that some of the wires in
the circuit are unaffected. This could be done by either re-
stricting the number of attacked wires or by requiring that
the attack fail with some probability. In our case, we elimi-
nate this requirement by only considering the restricted class
of additive attacks.
Gennaro et al. [15] and, more recently, Tauman-Kalai et

al. [24] considered tampering attacks that apply only to the
memory but not to the circuit logic. The work of Liu and
Lysyanskaya [29] considered the question of protecting cir-
cuits against leakage and tampering in the split-state model,
where the leakage and tampering functions are not allowed
to operate on the entire circuit at once but only on differ-
ent parts of it. Ishai et al. [22], as well Dachman-Soled and
Tauman-Kalai [8, 9], considered a reactive setting where in
each clock cycle, the circuit produces outputs as well as up-
dates its internal state. In their model, no part of the circuit
must be free from tampering, but the adversary is restricted
to tampering with a bounded number of wires in each clock
cycle. Finally, Faust et al. [13] considered a variant in which
the adversary can attack every wire in the circuit, but each
attack fails with some constant probability.

4. PROTECTING LOW-DEGREE CIRCUITS
OVER LARGE FINITE FIELDS
In this section we construct ε-secure implementations for

low-degree arithmetic circuits over large finite fields. The
main idea behind the construction is as follows. We ensure
that any additive attack on the circuit will have one of two
consequences: it will either cause the circuit to output a ran-

dom output for all inputs, or it will be equivalent to a set of
wire corruptions on the inputs and the outputs of the circuit.
To do so, we encode the values in the circuit and compute
over encoded values. The special property of the encoding is
that every additive attack on the encoded values will cause
the encoding to become invalid. We first present a simpler
construction whose security holds when the wire values sat-
isfy some local randomness property (Section 4.1). Later, we
eliminate this assumption by applying a general transforma-
tion to the circuit (Section 4.2). Finally, we combine the two
together into a secure construction for low-degree circuits
and arbitrary inputs (Section 4.3). We begin by presenting
the security notion for specific input distributions.

Definition 4.1. Let F be a finite field, C : Fn → F
k an

arithmetic circuit, and I a distribution over Fn. We say that

a circuit Ĉ is an ε-secure implementation of C with respect
to I if the following holds:

• Completeness. For all x ∈ F
n, Ĉ(x) ≡ C(x).

• Additive-attack security with respect to I. For any addi-
tive attack A, there exists ain ∈ F

n and a distribution Aout

over F
k such that SD(C̃(I), C(I + ain) +Aout) ≤ ε where

C̃ ← A(Ĉ).

4.1 Security for locally-random distributions
We now present a secure construction for constant degree

circuits and specific input distributions. Similarly to the
approach of [5] for secure computation with preprocessing
(and somewhat similarly to the MAC-based quantum MPC
protocol of [2]), our construction is based on a simple homo-
morphic MAC. However, in contrast to [5], we cannot rely
on any tamper-proof component. The main idea is to add
for every wire in the circuit another wire carrying its MAC
value. When two wires enter a gate the two MAC values
corresponding to them will enter a special circuit that will
produce the expected MAC value of the gate’s result. Af-
terwards, the result of the gate and the corresponding MAC
value are checked. The MAC used will have the property
that if an input to a gate is attacked then the MAC value
produced separately for this gate will not verify with the
gate’s result. As soon as this situation is detected a special
abort flag will become non-zero causing the entire circuit to
output a random value.
The construction will guarantee security as defined in Def-

inition 4.1 with ε = O (d/|F|), where d is the degree of the
circuit it is applied on, under two assumptions.

1. The inputs of each gate are sufficiently random. In Sec-
tion 4.2 we present a transformation that will randomize
the inputs of each gate in the circuit.

2. The input to the circuit is taken from a specific input
distribution. In Section 4.3 we present a construction for
arbitrary inputs.

Since the security of the construction depends on the degree
of the circuit, the construction is only useful for low-degree
circuits. We now define the required local randomness prop-
erty.

Definition 4.2. Let F be a finite field, C : Fn → F
k a

randomized arithmetic circuit, and I a distribution over F
n.

We say that C is locally ε-random with respect to I if for any
(y, z) ∈ F

2, and any pair of gates (g1, g2) whose outputs are
the inputs to the same gate in C, it holds that the probability
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Figure 1: MAC computation for multiplication gates
( · denotes field multiplication).

over x← I that the outputs of (g1, g2) in C(x) are equal to
(y, z) is at most ε.

We now describe a construction that takes as input an
ε-random circuit with respect to some class of input distri-
butions and transforms it to a secure circuit with respect to
the same class of distributions. The idea is as follows. For
gate gc with inputs ga and gb, the circuit will compute a
MAC for gc in two ways. The first way is by computing the
gate’s result and obtaining the MAC directly from the re-
sult. This MAC value is denoted in the construction below
by f ′c. The second way is by homomorphically combining
the input MACs f ′a and f ′b into a MAC for gc. This MAC
value is denoted below by g′c. Finally, the circuit will verify
that f ′c = g′c. The guarantee of the MAC is that every addi-
tive attack is either harmless and will not affect the result,
or it will be the case that f ′c �= g′c with high probability. In
the latter case, a special wire inside the circuit will become
non-zero and will cause the entire circuit to output a random
value. Intuitively, this guarantee is achieved by utilizing the
fact that addition and multiplication do not commute.
See Figure 4.1 for the MAC for multiplication gates.

Construction 4.1. Let C : Fn → F
k be a circuit. Let gi,

1 ≤ i ≤ |C|, denote the gates of C in some topological order.

Define a circuit Ĉ that on input x performs the following:
1. Compute z = C(x).
2. Generate a random field element v ∈ F.
3. For i = 1, . . . , deg(C) compute pi = vi using multiplica-

tion gates.
4. For any gate gi of degree di, compute f ′i = gi · pdi .
5. For each non-input gate gc, c = n + 1, . . . , |C|, let ga

and gb be its inputs and let da and db be their degrees.
Compute the value g′c as follows:

• If gc is a multiplication gate, let g′c = f ′a · f ′b.
• If gc is an addition gate: (1) if da > db let h

′
c = pda−db ·

f ′b and g′c = f ′a + h′c, (2) if da < db let h′c = pdb−da · f ′a
and g′c = h′c + f ′b, and (3) if da = db let g′c = f ′a + f ′b.

• The case of a subtraction gate is handled similarly.

6. For any non-input gate gi, let fi = f ′i − g′i.
7. Let f =

∑
i firi where ri is a random field element.

8. Output z+ fr′ where r′ is a random vector from F
k.

Theorem 4.1. Let C : Fn → F
k be a randomized arith-

metic circuit of degree d which is locally ε-random with re-

spect to a distribution I. Then the circuit Ĉ obtained by ap-
plying Construction 4.1 to C is a (|F|ε+ (d+ 1)/|F|)-secure
implementation of C with respect to I.

4.2 Obtaining locally-random circuits

We now present a general transformation mapping any
arithmetic circuit C into a locally random circuit C′ whose
output encodes the output of C. Similar transformations
were previously used for the purpose of protecting circuits
against leakage [23, 19]. We use a natural generalization
of a transformation from [19] to the arithmetic setting and
show that it satisfies the required local randomness property,
namely that the pair of inputs to each gate in C′ have almost
full entropy. Similarly to [19], each wire a inside C (including
input and output wires) will be split into two wires, one
masked by r1 and the other masked by r2. Each gate c of
C with inputs a, b will be replaced by a gadget that maps
(a+r1, a+r2, b+r1, b+r2) to (c+r1, c+r2). The gadget has
the property that the inputs of every internal gate are almost
completely random (assuming that r1 and r2 are random).
The two random field elements r1, r2 will be reused for the
whole circuit.

Construction 4.2. The gadget add is the circuit that,
on input (v1, v2, v3, v4, r1, r2) performs the following: (the
circuit will be always used where v1 = a + r1, v2 = a + r2,
v3 = b+ r1, v4 = b+ r2)

1. Compute v5 = v1 + v4 (note that v5 = a+ b+ r1 + r2).

2. Compute v6 = v5 − r2 (note that v6 = a+ b+ r1).

3. Compute v7 = v5 − r1 (note that v7 = a+ b+ r2).

4. Output (v6, v7).

The gadget sub is defined similarly.

We define the multiplication gadget mult as follows:

Construction 4.3. The gadget mult is the circuit that,
on input (v1, v2, v3, v4, r1, r2) performs the following: (the
circuit will be always used where v1 = a + r1, v2 = a + r2,
v3 = b+ r1, v4 = b+ r2):

1. Compute v5 = v1v4 (note that v5 = ab+r1b+r2a+r1r2).

2. Compute v6 = v1r2 (note that v6 = ar2 + r1r2).

3. Compute v7 = v4r1 (note that v7 = br1 + r1r2).

4. Compute v8 = v5 + r2 (note that v8 = ab + r1b + r2a +
r1r2 + r2).

5. Compute v9 = v8 − v6 (note that v9 = ab+ r1b+ r2).

6. Compute v10 = v9 − v7 (note that v10 = ab+ r2 − r1r2).

7. Compute v11 = r1r2

8. Compute v12 = v10 + v11 (note that v12 = ab+ r2).

9. Similarly, compute v13 = ab+ r1

10. Output (v12, v13)

It is not hard to verify that for any a, b ∈ F, the dis-
tribution of the pair of inputs of every gate inside add, sub
and mult takes each value from F

2 with at most O
(
1/|F|2)

probability.
We will now build our locally-random circuit. We start

from a circuit C and replace all of its gates with their cor-
responding gadgets obtaining C′. Notice that both gadgets
assume that every input wire x is split into two wires x+ r1
and x+r2. We thus add additional gates to C′ that generate
two new random values r1, r2 and encode every input xi of
C to (xi+r1, xi+r2). We also require that C′ will output r1
and the first element of each wire pair. This will allow us to
define a decoder circuit Dec in order to decode the outputs.

Construction 4.4. Let C : Fn → F
k be a circuit. Con-

sider the circuits (C′,Dec) that are defined as follows.
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• The circuit C′ is constructed as follows.

1. C′ on input x generates random field elements r1, r2 ∈
F for every i computes x′i = (xi + r1, xi + r2).

2. Every gate of C is replaced in C′ by the corresponding
gadget as described above.

3. Let y1, . . . , yk be the first elements from wire pairs cor-
responding to the output. C′ will output (y1, . . . , yk, r1).

• The circuit Dec on input (y1, . . . , yk, r1) outputs (y1 −
r1, . . . , yk − r1).

We now claim that the circuits resulting from Construc-
tion 4.4 are an O

(
1/|F|2)-random implementation of C with

respect to all input distributions in which every input ele-
ment is (individually) uniform. Formally,

Theorem 4.2. For any circuit C : Fn → F
k, the circuits

(C′,Dec) resulting from applying Construction 4.4 to C have
the following properties:

• Completeness. For any x ∈ F
n, C(x) = Dec(C′(x)).

• Randomization. The circuit C′ is a O(1/|F|2)-random cir-
cuit with respect to every input distribution I in which
each entry Ij is distributed uniformly over F.

• Complexity. The size of C′ is O(|C|).

4.3 Security for arbitrary inputs
We now present our construction for additive-attack se-

curity of low-degree circuits for arbitrary inputs. We use a
simple randomized input encoding to ensure that the input
distribution I satisfies the required local randomness prop-
erty. We then define an augmented circuit that will receive
such an input distribution, recover the input and compute
the original circuit.

Construction 4.5. Let C : Fn → F
k be a circuit. We

define the circuit CAUG : Fn+1 → F
k that on input x0, . . . , xn

outputs C(x1 − x0, . . . , xn − x0).

We now present our construction for securing low-degree
circuits over arbitrary inputs.

Construction 4.6. Let C : Fn → F
k be a circuit. We

construct Ĉ from C via the following transformations.
• Construct CAUG from C using Construction 4.5 (to un-

mask the inputs of C).
• Construct (C′,Dec) from CAUG using Construction 4.4 (to

randomize all wires inside CAUG).

• Construct Ĉ′ from C′ using Construction 4.1 (to addi-
tively secure C′).

The circuit Ĉ on input x preforms the following.
• Generate a random field element r ∈ F.

• Output Dec(Ĉ′(r, x1 + r, . . . , xn + r)).

We claim that Construction 4.6 above transforms any low-

degree circuit C to an additively secure circuit Ĉ.

Theorem 4.3. For any circuit C of degree d the circuit Ĉ
obtained by applying Construction 4.6 to C is an O (d/|F|)-
secure implementation of C.

5. PROTECTING ARBITRARY CIRCUITS
OVER LARGE FINITE FIELDS

In Section 4 we presented a transformation that meets the
goal of additive-attack security (see Definition 1.1) for low-
degree circuits. However, the field size required for obtaining
security grows linearly with the degree of the circuit. Thus,
in some cases, the field size must grow exponentially with
the circuit size. In this section, we present a transformation
where the field size can be much smaller. We first present a
construction using small tamper-proof components and later
eliminate these components.

5.1 A solution using tamper-proof components
Suppose we are given tamper-proof components Gadd, Gsub

and Gmul, that receive a pair of AMD-encoded inputs for a
gate g, decode the inputs, compute the output of g, and
finally produce a fresh AMD encoding of this output.
Such components can be used in a straightforward way to

obtain AMD circuits: first, replace every addition, subtrac-
tion and multiplication gate in C with Gadd, Gsub and Gmul

respectively. Next, append to each output gate an AMD de-
coder circuit Dec to perform the output decoding. Finally,
combine the error flags of all the Dec circuits such that in
case one of the decodings fails, the output of the entire cir-
cuit will be random. Since Gadd, Gsub, Gmul verify their inputs
and encode the outputs, the security of the AMD code guar-
antees that any additive attack on the internal wires of C
will be caught with high probability.

Corollary 5.1. There exists a finite gate set G such that
for any arithmetic circuit C over some finite field F, there

exists an arithmetic circuit Ĉ of size O(|C|) over G such

that Ĉ is an ε-secure implementation of C, where ε = 1 −
(|F| − 1)2/|F|2.
5.2 Eliminating the tamper-proof components
The tamper-proof components of the previous construc-

tion can be eliminated in a natural way by first implementing
each component using a (constant-size) arithmetic circuit
and then applying the construction for low-degree circuits
to protect this circuit against additive attacks. Security is
implied by the following composition theorem.

Construction 5.1. Let C be an arithmetic circuit, C′

be an ε-secure implementation of C over some gate set G
containing m components G1, . . . , Gm from G. In addition,

for all 1 ≤ i ≤ m let Ĝi be an εi-secure implementation of

Gi. Consider the circuit Ĉ over the gate set {+,−, ·} where

the gate Gi is replaced with Ĝi for every i.

Theorem 5.1. For any circuit C : F
n → F

k the cir-

cuit Ĉ : F
n → F

k constructed in Construction 5.1 is an(
ε+

∑m
i=1 εi

)
-secure implementation of C.
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