Cryptanalytic Applications of the PlayStation 3: the Case of DES

Dag Arne Osvik

Eran Tromer Weizmann Institute of Science

Cell Broadband Engine

- 1 PowerPC core
 - Based on the PowerPC 970
 - 128-bit AltiVec/VMX SIMD unit
- 8 or 7 "synergistic processors"
 - 256KB of fast local memory
 - 128-bit, 128-register SIMD
- Runs at ~3.2GHz

 An x86-64 core has a single 128-bit SIMD unit with just 16 registers.

Running DES on the Cell

- Bitsliced implementation of DES
 - 128-way parallelism
 - S-boxes optimized for CPU instruction set using the S-box optimizer of Dag Arne Osvik
- 4Gbit/sec = 2²⁶ blocks/sec per SPU
- 32Gbit/sec per Cell chip
- Verified using IBM's Cell simulator
- Can be used as a cryptographic accelerator (ECB, CTR, many CBC streams)

Breaking DES on the Cell

- Reduce the DES encryption from 16 rounds to the equivalent of ~9.5 rounds, by shortcircuit evaluation and early aborts.
- Performance:
 - 108M=2^{26.69} keys/sec per SPU
 - 864M=2^{29.69} keys/sec per Cell chip

Comparison to FPGA

Expected time to break:

- COPACOBANA
 - -~9 days
 - €8,980
 - A year to build
- 52 PlayStation 3 consoles
 - ~9 days
 - €30,056 (at US\$700 each)
 - Off-the-shelf
- Divide by two if you get $E_{\kappa}(X)$ and $E_{\kappa}(\overline{X})$.

DreamHack 2004 LAN Party 5852 connected computers

Under 1 hour for a real-time DES break.

Other cryptographic applications for the Cell Broadband Engine

- Limited by SPU microarchitecture and memory
- Good match for low-memory, straight-path computation over small operands.
- Other promising applications:
 - AES acceleration (tentative results: x86-scale performance <u>per SPU</u>)
 - Stream cipher cryptanalysis
 - Sieving for the Number Field Sieve
 - Hash collisions

