Integrity for Car-Computing A cryptographic vision for integrity in vehicle networks

Eran Tromer

בית הספר למדעי המחשב על שם בלבטניק

ク The Blavatnik School of **Computer Science**

Transportation CybserSecurity

18 Feb 2014

The first vehicle computer D-17B *Minuteman I* guidance system

The first vehicle computer D-17B *Minuteman I* guidance system

In-car integrity

 Modern cars contain dozens of **Electronic Control Units**

trial

- Can you trust them?
 - Hardware supply chain
 - Bad software
 - Errors
 - Bad updates
 - Attacks

ars technica Chinese counterfeit chips causing military hardware crashes Component failure reports from [...] contractors worldwide, -Jing Boeing, Raytheon, BAE, defense man, and Lockheed EEITi ons have turned up mes **Toyota's Killer Firmware:** ber of counterfeit **Bad Design & Its Consequences** installed in mission-[...] Oklahoma court ruled against Toyota in a case of unintended acceleration that led to the death of one of the occupants. Central to the Module's (ECM) firmware. Engine Control

Example: engaging ABS

Approach: proof-carrying data

Integrity via Proof-Carrying Data

- Diverse network, containing untrustworthy parties and unreliable components.
- Enforce correctness of the messages and ultimate results.

Integrity via Proof-Carrying Data (cont.)

- Every message is augmented with a proof attesting to its compliance" with a prescribed policy.
- Compliance can express any property that can be verified by locally checking every node.
- Proofs can be verified efficiently and retroactively.
- If the final proof is OK, we can trust the result.

The road to Proof-Carrying Data

Feasibility			Network		C program size		Program running time		B Used in Zerocash: anonymous Bitcoin [Ben-Sasson Chiesa Garman Green Miers Tromer Virza 2013]
Theory	Proto- type	Fast	1 hop	Any	Small	Any	Short	Any	
✓			✓						[Micali 94] [Groth 2010]
✓			✓	✓					[Chiesa Tromer 2010]
✓	~		✓		✓		•		[Ben-Sasson Chiesa Genkin Tromer Virza 2013] [Parno Gentry Howell Raykova 2013]
✓	✓ ▲		✓		✓	✓	✓		[Ben-Sasson Chiesa Tromer Virza 2014]
✓	 ✓ 			✓	✓	✓	✓	✓	upcoming

The correct execution of arbitrary C programs can be verified in 5 milliseconds using 230-byte proofs.

The road to Proof-Carrying Data on the road

- More efficient PCD: <u>cost</u>, <u>latency</u>
- Formally defining the critical security properties within a vehicle, and then applying PCD to enforce them
- Extending to V2V and V2I
- Trusting other cars

 (that trust other cars
 (that trust other cars
 (that trust infrastructure (and other cars))))

 Protecting privacy using zero-knowledge proofs
 SCIPR Lab scipt-lab.org